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PREFACE

This proceeding contains the papers presented at the 1993 Army
Symposium on Solid Mechanics, held at Plymouth, Massachusetts, August
17-19, 1993. It was the thirteenth in a series of biennial symposia with an
emphasis on solid mechanics research achievements relevant to defense
system needs. The symposia series which began in 1966, has been
sponsored by the Army Materials Technology Laboratory in its role as the
US Army lead laboratory for solid mechanics research and exploratory
development. In October 1992, the research laboratories under Army
Materiel Command were reorganized, and the Army Research Laboratory
(ARL) was established with 10 Directorates. The Materials Technology
Laboratory became the Materials Directorate. This symposium is the first
one organized under ARL with collaborations from three directorates,
namely Materials Directorate, Vehicle Structures Directorate and Weapons
Technology Directorate, and the Army Research Office which has the
responsibility of managing Army's basic research programs.

The symposium is organized into nine technical sessions covering
subjects from basic research to applications. A total of fifty seven (57)
technical papers were presented by the contributors representing
government laboratories, academic institutions, and industry.

The Symposium Organizers wish to thank Mr. Lawrence D. Johnson,
Directorate Executive of Materials Directorate, Army Research Laboratory
and Dr. George H. Bishop, Jr., Technical Director of Materials Directorate
for their support and encouragement in organizing the symposium. The
dedication and hard work of Mrs. Ann Baratta is gratefully acknowledged
for handling all communication's related to the symposium. Finally the
organizers wish to thank Mrs. Karen Wilcox, Materials Directorate
Conference Coordinator, for her effort in arranging the setting for the
symposium which really enhanced the interchange among participants, and
her effort in publishing the proceedings. The administrative contributions of
Ms. Lori Mantia of Universal Technology Corporation are also
acknowledged.

S.C. Chou, ARL/MD
F.D. Bartlett, Jr., ARL/VSD
T.W. Wright, ARL/WTD
K. Iyer, ARO
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Prediction of Large Scale High Velocity
Penetration Experiments on Ceramic Armor

Dr. Stephen J. Bless* Dr. Charles E. Anderson, Jr.
Mr. Ravi Subramanian Dr. David Uttlefield

Institute for Advanced Technology Southwest Research Institute
The University of Texas at Austin 6220 Culebra Road

4030-2 W. Braker Lane P. 0. Drawer 28510
Austin, TX 78759-5329 San Antonio, TX 78228-0510

ABSTRACT-in December 1992, experiments were conducted
in which 2.8 MJ L/D = 30 rods were shot at 1.775 and 1.8 km/s into 3¾
scale ceramic armor targets containing 300 mm line-of-sight thickness
of 99.5% alumina. These experiments were preceded by independent
predictions using CTH and various analytical models. Parameters for
the analyses were derived from several different relatively small scale
laboratory penetration experiments. It turned out that all the predic-
tions underestimated penetration at 1.775 km/s. The discrepancies
are probably due to the inability of the analyses and the laboratory
scale experiments to properly mimic the degradation that occurs
ahead of the penetration in thick tiles struck by long rods.

INTRODUCTION

Programs are under way in several countries to develop new
gun and missile technologies which have the potential to substantially
increase the striking velocity of projectiles on battlefields in the next
century. Under contract from the Electric Armament Program Office of
the U.S. Army Armament Research, Development and Engineering
Center, the Institute for Advanced Technology (IAT) has been evaluat-
ing the potential for more efficient penetration of ceramic armor at
higher impact velocities. Simple Tate modeling indicates that ceramics
may be more vulnerable to hypervelocity attack [1,2]. On the other
hand, Russians report that ceramics are very difficult to penetrate
above their intrinsic failure speeds [3,4]. Theoretical work at IAT
indicates that penetration resistance, RT, may increase with impact
velocity due to the pressure dependence of ceramic "flow stress" [5].

*Denotes Speaker 9



There are a great many design parameters associated with
ceramic armor involving materials and geometry. There are also a
large number of projectile parameters besides velocity, since we are
ultimately interested in penetration concepts other than conventional
long rods. Although development of military projectiles must be based
on experiments that are close to the appropriate scale, practicalities
dictate large roles for analysis, numerical simulation, and subscale
testing.

Our initial approach to the study of ceramic armor has been to
conduct a series of benchmark experiments at the largest feasible
scale. The experiments were preceded by predictions using standard
analytical and numerical techniques. Three benefits are expected:
(1) an initial assessment of velocity effects on ceramic armor,
(2) reference data for verifying fidelity of future smaller scale tests, and
(3) assessments of predicting methodologies that might be used to
reduce the number of needed experiments.

DESCRIPTION OF EXPERIMENTS

Projectiles

Projectiles were launched at 1.8 and 2.6 km/s with the G-04
two-stage light-gas gun at the Arnold Engineering Development
Center (AEDC). The rod length to mass effective diameter ratio was
chosen as 30, which represents the state of the art in fielded long rod
penetrators. The energy of the projectile was kept constant at a
nominal value of approximately 2.9 MJ. This energy was selected
because it was the largest energy that could be launched with reason-
able success probability at 2.6 km/s with the two-stage light-gas gun at
the AEDC facility.

Projectiles were size scaled to keep the kinetic energy constant.
The dimensions are summarized in Table 1, and Figure 1 shows the
designs. The design of the superior grooves was modeled after those
used by Silsby [6]. The material was Teledyne 91% tungsten swaged
WHA (X27X). According to the purchase specifications, the density of
these rods is 17.45 g/cm 3 (which we verified), the ultimate stress is
190 ksi, and the elongation is 10%.

The projectiles were gripped in full length sabots made from
7075T6 alloy aluminum that were EDM machined to mate with the

10



Table 1
Projectile Parameters

1,775 knds Test 2.6 km/s Test
Mass (g) 1830 850
Kinetic energy (MJ) 2.88 2.88
Length (mm) 494 384
Mass Effective Diameter (mm) 16.5 12.8

AVP--W-W J2 010*)-I

_ ..... L.. ....... _ •_ =_= l_. I..L L 010

/ ..... . . ...-.- =

Figure 1. Sketch of projectiles.

superior grooves. There were nylon bore riders fore and aft. The
sabots were designed to pivot behind the rod. Details of launch tech-
niques for these rods are provided [7,8].

Target Design

The targets were modeled after the ATM (armor technology
module) target set developed by the Army Research Laboratory [9].
The scale was reduced from the ARL target dimensions because the
penetrators were lower energy than the 6.8 MJ nominal "full scale"
penetrator energy. Cube root energy scaling provided the scale factor
of 75%.

The design of the ceramic target is shown in Figure 2. The
ceramic tiles were Coors Porcelain 99.5% alumina (AD995). The inter-
faces between tiles were ground and matched by Coors. The RHA
components were 269 BHN, except for the ceramic cover plate which
was 300 BHN. The steel confinement was double-pass welded, after
pre-heating the assembly to 2500 Centigrade, into a box without the

11



rear confinement plate in place. The ceramic tiles were then potted in
place with Epon 828 resin mixed with an equal mass of V-40 curing
agent. The tiles were centered in the confinement box with six
Isodamp C-1002-wedges per tile. Large voids in the epoxy introduced
during mixing were removed by placing the mixed epoxy in a vacuum
for approximately ten minutes.

AW~ Pr '0

ir SHOT IIhfq0 ,,

Ir TAPIFr \V"IFFS.S
AI-995-' PCX.

FRONT VIEW SIDE VIEW
(SECTIONED VIEW OF TARGET)

Figure 2. Ceramic target design.

After the rear confinement plate was lowered into place, a
clamping pressure of approximately 5 psi was applied with a large
weight and the excess epoxy was allowed to squeeze out around the
rear confinement plate. The epoxy then cured for one week before the
rear confinement plate was double-pass welded into place (without
pre-heat), completing the target. The inside surfaces (against the
ceramic) of both the front and rear confinement were surface ground,
resulting in an epoxy-filled gap of less than 0.5 millimeters between
the tiles and the front and rear confinement plates. The epoxy-filled
lateral gap between the tiles and the steel side plates ranged from 5 to
10 mm. The areal density of the ceramic target, as measured along
the shotline, was 253 g/cm 2.

RESULTS OF EXPERIMENTS

Table 2 lists all of the experimental parameters and results.
Figure 3 shows the craters that were produced in the witness blocks.

The ceramic targets were destroyed by the impacts, most
corner braces failed, and the ceramic tiles were broken into pieces no
larger than 30 mm across. The lateral confinement plates, however,
were not noticeably bent. The damage to the cover plates was con-

12



Table 2
Experimental Results

Witness Pack
Shot Number V. (Km/s) DOP (mm) Lr (mm)

6864 2.59 77.5 8
6865 1.73 85.8 67
6866 2.60 71.0 5
6867 1.77 82.0 51

. ..........

.................. ... ... .. ........... . . .

~ . .... . .. . . . . . . . . . . . . . . . .

Figure 3. Craters produced by residual penetrators.

ventional for thick cover plate designs, i.e., there was a deeply
undercut region in the cover plate at the interface between this plate
and the ceramic. This undercut may indicate side flow of rod material
during the initial stage of penetration into the ceramic [10]. This was
true at both velocities. There were also circular imprints on the inside

13



of the coverplates which may provide evidence of the size of the
fractured zone around the penetrator during the penetration. The
diameter of this zone was about 150 mm at both velocities.

The differential efficiency of the ceramic element, Aec, can be
computed from the equation:

Aec = Wref - (Wcp+Wbp+Wr)
WC

where W represents areal density, and subscripts ref, cp, bp, r, and c
respectively, refer to penetration of same penetrator into RHA, cover
plate, back plate, penetration in witness block, and ceramic element.
For Wref, we used a polynomial fit to high L/D (length/diameter) ratio

WHA rods striking RHA:

7
Wref = psL Y- CiV'

0

where ps is steel density, L is rod length, V is velocity in m/s, and the

coefficients C, are:
C= 30.1886 C2= 88.621 C4=16.4003 C6= 0.31181

Cl =-81.1852 C3=-50.3917 C6= 0.31181 C7 =-0.01313

The differential efficiency turns out to be 1.48 ± 0.08 and 2.02 +
0.02 at impact velocities of 1.75 and 2.6 km/s, respectively. The
ordnance velocity value is substantially lower than usually reported for
good alumina in laboratory tests. For example, values of 2.5 have
been reported ([11], [12]) for similar aluminas at ordnance velocities.
We know of no high velocity Aem data for the same alumina, but Aem
values computed from the alumina tests range from 1.8 to 1.9 over
impact velocities of 2 to 2.5 km/s [13].

PREDICTIONS

The predictions were all carried out and documented before test
data were available. The predictions were based on the nominal
impact velocities 1.775 and 2.60 km/s.

Two analytic models were used to predict the results of the
ceramic armor testing: Tate and Walker/Anderson.

14



Tate Model Predictions

Application of Tate modeling [14] to ceramics has become
common practice [11,15,16], since the RT parameter is a convenient
way to express effective penetration resistance. This is true, even
though the penetration process in ceramics is considerably different
from that which Tate assumed for metals.

IAT carried out the Tate model predictions with the properties
Y=15 kbar for the rod, and RT=55 kbar for RHA and 63 kbar for

ceramic.
Selection of RT= 6 3 kbar was based on an analysis of DOP data

by Woolsey [17] and Gooch [18], shown in Figure 4. Here, RT was
computed from their data by assuming that the rod penetration velocity
is constant, and by assuming:

Lr'Lo -Pref" Pr

Lo0 Pref

where P is penetration. Woolsey's data are for WHA and Gooch's
data are for DU. Nominally for RHA, Y=18 kbar, and for DU, Y=12
kbar. Considerable scatter can be seen. Our selection of RT = 63
kbar was based on the belief that the lower values of RT in the thickest
tiles were most likely to represent the behavior of AD 995 in the ATM
target. At the exit face of the RHA backing plate, a simple breakout
model was used in which the target resistance decayed linearly to
zero, beginning at a distance 4D from the free surface.

Using these parameters, the predictions of the Tate's model

were: PR = 20.5 mm at V = 1.775 km/s and 47 mm at V = 2.60 km/s.

Correction to Nominal Conditions

In order to compare the predictions with the data, it is
necessary to account for the difference in velocity between the experi-
ment and the predictions. This is especially important at ordnance
velocity, when DP/DV is relatively large for RHA.

This correction was made using Tate's theory [14]. A layered
"Tate model was used for the ceramic and steel. Interfaces were

15
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Figure 4. R-Y from DOP data. Open circles [17] are for WHA rods closed
circles [18] are for DU rods.

ignored. The penetration resistance of the steel was taken as velocity
dependent, following [19], RT = 92.5 - 25 V,, where V, is impact velocity
in km/s and RT is in kbar. For each experiment, RT for the ceramic
was adjusted until the measured value of residual penetration was
obtained. Then, using this same value of ceramic RT, a new value of
residual penetration was computed for the nominal velocities Vn, 1.775
and 1.80 km/s. Using this procedure, we obtained the results shown
in Table 3.

The average value of RT that was derived for the AD995 in this
process was 46 kbar at 1.775 km/s, and 60 kbar at 2.6 km/s.
Penetrations (based on simple averages) are 97 mm and 75 mm,
respectively.

Table 3
Reference Residual Penetration

VI Vn Pr (adj.)

km/s kMn% Shot mm

1.73 1.775 6865 108
1.77 1.775 6867 87
2.59 2.60 6864 79
2.60 2.60 6866 71

16



At 1.775 km/s, the observed value of residual penetration
greatly exceeds the Tate model pre-test prediction. The discrepancy is
still unacceptable at 2.60 km/s, although much less. At 1.775 km/s,
the disagreement mainly comes from the relatively low average RT

value required to match the data. RT values are closer at 2.60 km/s.
The calculation scheme used to derive RT from the data involves time
stepping and is apparently more accurate than the constant penetra-
tion velocity assumption used in Figure 4.

Walker/Anderson Model Predictions

The Walker-Anderson model [20] is based on a more realistic
description of the flow field around a long-rod penetrator than the Tate
model. Importantly, it also includes transient effects at impact and at
the end of penetration. The conceptual framework for the extent of
plastic flow is built on ductile cavity expansion, and the application of
the model to ceramics should be regarded as an empirical approach
with parameters that are adjusted to fit experimental data.

The model was run with two different values for the flow stress
of the failed ceramic. First, the model was run using 26 kbars (2.6
GPa) for the flow stress of the failed ceramic. The model results were
essentially identical to the predictions of CTH using the Johnson-
Holmquist model. However, comparison of the model predictions with
position-time data taken with the PHERMEX facility at Los Alamos
National Laboratory [21] indicated that the 26-kbar value was too
"strong," and that a value of 12 kbars (1.2 GPA) was a more appropri-
ate value. The second case, therefore, used the 12-kbar value to
represent the flow stress of the failed ceramic material for the ceramic
laminate target. The resulting predictions from the Walker-Anderson
model for the ceramic laminate target were:

V Strength Pr
(kmls) (kbar) (mm)
1.775 24 0 (stopped at ceramic base)
1.775 12 72
2.60 24 47
2.60 12 116

The predictions with 24 kbar strength very substantially under-
estimate penetration at 1.775 km/s. Even the 12 kbar strength
calculation underestimates the observed value. Thus, as with this Tate
model, all predictions based on DOP testing seriously overestimated

17



the effective strength of the ceramic at ordnance velocity. In hyperve-

locity, the predictions bracketed the observed value.

CTH Predictions

CTH calculations were performed using the Johnson-Holmquist
model [22]. An independent evaluation of the parameters for the
Johnson-Holmquist model has not been performed for 99.5%-pure
A120 3 . Therefore, the depth-of-penetration (DOP) data from Woolsey
[17] was used to "calibrate" the model constants. A parametric study
was performed, and it was determined that the flow stress of the failed
material was the most significant model parameter in these calcula-
tions. It was the only parameter that was varied in the calculations.
The experimental data and the computational results are shown in
Figure 5. It is clear from the scatter in the data, particularly for the
thicker tiles, that several different values for the failed flow stress might
be used. However, the 26 kbar value appears to represent the data
reasonably well over the various tile thicknesses tested. Thus, for the
CTH calculations, a value of 26 kbars (2.6 GPa) was used for the flow
stress of the failed ceramic. The regular Johnson-Cook parameters
were used for the tungsten and steel, and are listed in Table 4. The
Johnson-Holmquist parameters are listed in Table 5. (Parameters are
defined in Figure 6.)

Table 4. Johnson-Cook Constitutive Parameters

YO B n C m Tmelt G v Frac. Stress
(GPa) (GPa) (-) (-) (-) (K) (GPa) (-) (GPa)

Tungsten 1.51 0.177 0.12 0.016 1.00 1752 119 0.30 2.0
4340 Steel 1.189 0.765 0.26 0.014 1.003 1793 77.6 0.29 2.0

ceq = (YO + Br) [I + CIn (i/cd)] (I-T%) i,= 1.0 s - T=( ,I. T, =3300KS, o,-,. T o.OO

Table 5. Johnson-Holmquist Model Parameters
S1 $2 S3 P 1  P 2  T C6  C3

(GPa) (GPa) (GPa) (GPa) (GPa) (TPa) (-) (-)

3.91 5.58 2.59 1.4 7.3 -260 1.13 0.007

a, I I[1+C.R (ip/e) i 0 = LOS 1

18
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Figure 5. DOP data [17] and CTH model calculations.
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Figure 6. Johnson-Holmqulst Brittle Model.

Figure 7 shows the results for final penetration depth at these
two velocities. At 1.775 km/s the rod only reached the base of the
ceramic; PR = 0. At 2.60 km/s, PR = 18mm. Both calculations very
seriously underestimated the observed values.
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DISCUSSION

All predictions of the ordnance velocity experiment were qualita-
tively wrong. Each prediction scheme was based on laboratory test
results, and this test geometry represented a genuine extrapolation, in
terms of tile thickness, rod length, tile shape (cube) and velocity. We
show in [23] that the ability of these models to predict RHA penetration
is excellent, so the discrepancies must be due to treatment of the
ceramic component. The fact that predictions were more accurate at
2.6 km/s suggests that at higher velocity inertia dominates the material
responses. Consequently, we think the failure of the predictions
probably stem from two causes: (1) phenomena occur in the ATM
target that are qualitatively different from those occurring in the tests
used to calibrate the models; and (2) the physical description of
ceramics in the models is incomplete.

The most accurate of the quasi empirical modules was the one
that was calibrated against the Phermex experiments, which
resembled the ATM target in that the tile was very thick. Thus,
perhaps quasi empirical models can be used oas long as there is not
too much extrapolation.

It should also be pointed out that the performance of the ATM
target at 1.775 km/s, resulting in Aec = 1.48, was considerably less
than achieved with newer laminated ceramic armor designs [24]. If
such a target had been tested in this program, the prediction may have
been much more accurate; nevertheless, the inability to predict the
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experimental results clearly demonstrates the inadequacy of our con-

stitutive treatment of ceramics.

CONCLUSIONS

1. Analytical and numerical models for heavy ceramic armor cannot
be relied upon for predicting performance for impact configurations
that differ significantly from those from which the model parameters
were derived.

2. Model scale experiments used for evaluating ceramic armor or for
model calibration should more faithfully mimic real armor configura-
tions.

3. More effort is needed to develop ceramic behavior models that
incorporate all of the physical processes that control ceramic pene-
tration resistance. This is very important if we are going to assess
a prioridesigns the improve or optimize ceramic performance.
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ABSTRACT

The resistance of a ceramic to penetration by a long tungsten-alloy rod,
impacting at 1600 m/s, depends on the design and construction of the entire
target. A ceramic in one target may offer little resistance to penetration, but in a
different target configuration, the same ceramic may allow no penetration.
Resistance to penetration depends on damage to the ceramic, and damage depends
on target characteristics. Sources of damage were identified by direct observation,
or were inferred by varying the design and construction of targets and evaluating
the change in ballistic performance. Target modifications, introduced to reduce
damage, were found to nearly double the penetration resistance routinely reported
for a few common ceramics. This improved performance was found to be
accompanied by an interval of time during which the ceramic could not be
penetrated. With further modification of the target, the entire long-rod penetrator
was consumed by extended lateral flow at the surface of the ceramic. Damage,
suppression of damage, and target characteristics will be discussed.

INTRODUCTION

Ceramic armor for defeating long-rod penetrators usually performs below
expectations, and it is common to observe that increasing the thickness of ceramic
fails to achieve a corresponding improvement in the resistance to penetration. This
observation suggests that the ceramic is being damaged well ahead of the
penetrating rod. Designs for ceramic targets which are used to evaluate the ballistic
performance of ceramics are similar to designs for ceramic armor, so it is
reasonable to expect the performance of these targets to be degraded by similar
sources of damage. This study has examined damage in ceramic targets used for
ballistic evaluations, and has explored ways to reduce the damage and increase the
resistance to penetration.
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DAMAGE IN CERAMIC TARGETS

Damage in ceramic targets is illustrated by Fig. 1 which shows three simple
target configurations, A, B, and C. The ceramic in these targets was Ebon-A, a hot-
pressed, 99.8% pure aluminum oxide ceramic produced by CERCOM, Inc. Each
target was impacted by a tungsten-alloy rod launched at a velocity of 1500 m/s.
In target A, the ceramic was 6 mm thick and was bonded to steel backing by
approximately 1 mm of epoxy. The average penetration resistance of the ceramic,
interpreted by the Tate Model [1,2,3], was 2.3 GPa. In target B, the ceramic was
much thicker, and flash-radiographic observations were necessary to measure the
time interval for 6 mm of penetration. From this measurement, the average
penetration resistance was determined to be 6.0 GPa. In target C, a 6 mm
thickness of steel was bonded to the front of thick ceramic, and flash-radiographic
observations were again necessary to determine the time interval for penetration to
a 6 mm depth in the ceramic. For target C, the average penetration resistance was
determined to be 12.3 GPa.

Average penetration resistances of 2.3 to 12.3 GPa, for 6 mm thicknesses of
the same ceramic, can be explained qualitatively in terms of ceramic damage. In
the case of target A, impact against bare ceramic produced a peak shock stress
near 40 GPa, which is approximately four times the Hugoniot Elastic Limit of the
ceramic. This shock wave produced severe damage in the vicinity of impact. The
diverging shock wave attenuated rapidly, and the penetration resistance should have
increased as the damage decreased. However, when the shock wave reflected at
the low-impedance interface bond, it produced tensile damage at the back of the
ceramic. This additional source of damage limited the average penetration
resistance in target A to only 2.3 GPa. In the case of target B, the absence of a
low-impedance interface bond eliminated this source of tensile damage just 6 mm
from the impacted surface. With only impact damage, the average penetration
resistance was 6.0 GPa. In the case of target C, a front steel plate permitted some
attenuation of the impact shock before it arrived at the ceramic. The front plate also
probably retarded the displacement of damaged ceramic. The result was a higher
penetration resistance of 12.3 GPa.

The shock wave from impact propagates through the ceramic and into the
surrounding confinement. Some reflections occur at interfaces, but the major
reflections occur at free boundaries. Reflected waves return and interact in the
central region of the target. Although the diverging shock wave attenuates rapidly,
there frequently is evidence of damage by wave interactions. The upper two
radiographs in Fig. 2 provide evidence of this damage. In these radiographs, central
damage appears to begin as orthogonal zones, although only one zone of damage
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Fig. 1. Targets in which the ceramic Fig. 2. Radiographs which show
sustains different damage. influences on the penetration.

persists to alter the penetration path deeper in the ceramic. The small, 75 mm
square cross section of the confinement in this particular target was undoubtedly
responsible for the unusually strong interaction. However, with a target this small,
waves arriving at the free boundary have not attenuated to a level where wave traps
are completely ineffective. The lower two orthogonal radiographs in Fig. 2 show the
full penetration path in a similar target with wave traps at the boundaries. Here,
wave interactions have been reduced, the penetration path is more symmetrical,
and the penetration resistance has increased by approximately six percent.

Similar damage from wave interactions has also been observed in larger targets
with a 127 mm square cross section. The dimensions of these larger targets
precluded flash-radiographic observations during penetration, but a recovered target
shown in Fig. 3 reveals damage zones under the front steel confinement. These
orthogonal damage zones in the ceramic are aligned with surfaces of the free
boundary. In later tests, this damage was eliminated by configuring free boundaries
to disperse the reflected waves.

Damage from interacting waves can also be observed in acrylic targets similar
to those once tested by Kolsky and his associates [4]. By using a small explosive
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Fig. 3. Orthogonal damage zones Fig. 4. Orthogonal damage in an
in a ceramic target. acrylic block.

charge to shock an acrylic target with a square cross section, orthogonal damage
is produced in the central region as shown in Fig. 4. Ceramic targets with a circular
free boundary have been a special concern because the reflected wave converges
to the central region. Consequently, similar tests were conducted using acrylic
targets with a circular cross section. Targets from these tests are shown in Fig. 5.
The target at the left in this figure was shocked at the axis, so the reflected wave
converged to the axis where a damage zone developed. In a penetration test, the
damage zone and the penetration path would coincide. The target at the center was
shocked 10 mm away from the axis, so the reflected wave converged to a damage
zone diametrically displaced by nearly 20 mm. These observations suggest that the
scatter of data from penetration tests with ceramics may relate to the target
geometry and the location of impact. The free boundary of the target at the right
was configured with conical depressions. As a result, the reflected wave was
dispersed and a central zone of damage is barely visible.

SUPPRESSION OF DAMAGE

The target configuration shown in Fig. 6 includes a few features which reduce
damage and increase ballistic performance above the values commonly reported.
The steel side confinement is heated and allowed to shrink into contact with the
ceramic core, producing a prestress of a few tenths of a GPa. This prestress
cannot be varied greatly, and the available range of prestress produces little change
in the ballistic performance. The main benefit is believed to result from the
elimination of an epoxy bond at the peripheral interface. Although a shrink fit offers
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Fig. 5. Damage in acrylic targets with circular cross sections.
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impedance benefits, the low strength of an epoxy interface layer could also be a
consideration. The radial cracks, observed in Fig. 3, propagate to the periphery of
the ceramic at a velocity of approximately 3000 to 4000 m/s, forming wedge-
shaped blocks of ceramic which transmit force from the region where the
penetrator interacts with the ceramic. Epoxy is more easily compressed or
displaced than the steel confinement, and small increases in area at the periphery
can have a significant influence on behavior at the center of the target. A small
additional increase in performance occurs when epoxy at the back interface is
replaced by braze. Outside surfaces of the target were also configured with conical
depressions which, in an acrylic target, were found to disperse reflected waves and
reduce the damage from wave interactions in the central region.

Aluminum oxide ceramics with a purity of 99%+ were evaluated in the target
configuration of Fig. 6. The performance data from these tests are plotted as open
circles in Fig. 7 and are represented by the continuous curve. In this figure, the
average resistance to penetration serves as a measure of ballistic performance, and
is plotted as a function of time. The apparent scatter of data along the continuous
curve results from test variations such as prestress, bonding at the rear interface,
mechanical clamping of the target laminations, and characteristics of the front steel
confinement. These data indicate significantly higher ballistic performance than data
from standard depth-of-penetration (DOP) tests [1,5,6]. The data from DOP tests
are plotted as closed circles and are represented by the dashed curve.

LIMITED LATERAL FLOW AT THE CERAMIC

Recovered targets were examined for evidence which might explain the higher
performance in tests represented by the continuous curve in Fig. 7. Sectioned steel
cover plates suggested an initial time interval during which the ceramic could not
be penetrated. Fig. 8 shows two examples of residual penetrator material which has
accumulated at one side of the penetration path, trapped between the steel cover
plate and the ceramic. Judging by the volume of the depression in the steel plate,
from 20% to 30% of the penetrator was consumed during this interval. An
examination of the residue from this limited lateral flow provided details which were
consistent with many of the microstructural observations by Bless, et.al. [7].
However, Fig. 9 shows a distinguishing feature of limited lateral flow. Near
extremities of the flow, tungsten grains tend to pile up and deform, excluding the
penetrator matrix. The displacement of matrix material results in the formation of
matrix-rich zones as seen at the left of center in Fig. 9.

The target in Fig. 6 (and Fig. 8) is believed to have been poorly designed to
accommodate material eroded from the penetrator. The upper plate in Fig. 8 was
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tightly clamped, the ceramic remained intact, and erosion products could flow only
a limited distance into the interface. Consequently, the flow of incoming penetrator
material changed from 90 degrees to 180 degrees, doubling the force at the axis
of the rod. The state of damage at that time probably permitted penetration. The
initial accumulation of erosion products in the lower plate of Fig. 8 caused the
formation of an adiabatic shear band. A block of plate material, freed by this shear
band, wedged into the interface and effectively blocked the lateral flow of erosion
products. Again, the flow reversed, the axial force doubled, and penetration began.

The ability of a ceramic to temporarily resist penetration is also shown by the
flash radiographs in Fig. 10. However, details of the eventual penetration are
probably different from the explanation offered for Fig. 8. The target in Fig. 10 had
a front plate of titanium alloy, 13 mm thick, which permitted appreciable attenuation
of the shock wave from impact. However, the small 75 mm square cross section
of the target permitted a strong tensile interaction in the central region which nearly
coincided with the penetration time through the cover plate. The damage from this
interaction probably allowed an early onset of penetration and ended the brief
accumulation of rod material. Once penetration began, the granular flow of
displaced ceramic particles eroded away much of the rod material in the center of
the deposit, leaving only a residue as observed in Fig. 8.

EXTENDED LATERAL FLOW AT THE CERAMIC

The target in Fig. 11 was introduced in an attempt to correct conditions
believed to be responsible for limited lateral flow which prevented higher ballistic
performance with the target in Fig. 6. This target configuration permits the
examination of design variables which can be adjusted to minimize damage to the
ceramic and better accommodate the lateral flow of erosion products. Since there
is evidence that the impact shock is a source of damage, a shock attenuator was
included at the front of the target.

The target in Fig. 11 contains ceramic with a diameter of 72.01 mm and a
nominal thickness of 25 mm. Steel backing in the initial tests was RHA (rolled
homogeneous armor) with a matching diameter, a thickness of 70 mm, and a
hardness of 260 BHN. Steel backing with a higher hardness is one of the design
variables. The ceramic and its steel backing were confined by ARMCO 17-4 PH
steel with an inside diameter initially 0.13 mm less than the diameter of the core.
Heating this confinement to 482 degrees C provided the clearance for assembly
and left the confinement with a hardness of 420 BHN. In the initial design, the
cover plate was AISI-4340 steel with a hardness of 450 BHN and a thickness of
9.5 mm. A 0.25 mm thickness of PTFE (polytetrafluoroethylene) was added
between the steel cover and the ceramic to aid the accommodation of erosion
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products. The cover and the PTFE were bonded with Hysol 608 epoxy, and the
PTFE was also bonded to the ceramic and its confinement. These components were
placed in mild steel outer confinement using a second shrink fit. The shock
attenuator is another test variable. Initially, it consisted of a 35 mm thickness of
PMMA (polymethyl methacrylate) which reduced the shock stress at the ceramic
to less than a few tenths of a GPa. The surface of the outer confinement was
configured as a precaution, but this may not be necessary with an improved
attenuator.

In an early test, the ceramic was hot-pressed TiC. A 93% tungsten-alloy
penetrator, approximately 5 mm in diameter and 100 mm in length, was launched
at 1600 m/s. After the test, the outer confinement was removed so that interior
parts of the target could be examined. Photographs of the target interior are shown
in Fig. 12. In this figure, (A) is the cover plate, viewed from the interface side.
Erosion products abraded the plate as the flow moved radially away from the
entrance hole. Some erosion products are fused to the surface of the plate near the
periphery, but with the exception of this peripheral deposit, the interface side of the

31



A DB C

Fig. 12. Recovered target which shows extended lateral flow at the ceramic.

cover plate is almost bare. (B) is the corresponding surface of the ceramic. The
central region exhibits the most severe damage, and material there was lost to a
maximum depth of nearly 3 mm. However, the absence of radial flow lines where
material is missing from the ceramic surface suggests that damaged material was
separated from the surface after the rod was consumed and lateral flow ceased.
In the next test, the ceramic sustained similar damage, but was found to be almost
totally in place when the target was opened more carefully. Substantial areas of
shallow damage (0.25-0.50 mm flaking) were suspected to result from thermal
shock. (C) shows the inside of the outer confinement and the circumferential slot
cut by erosion products which flowed radially through the interface. (D) shows the
configured surface of the outer confinement.

Erosion products, fused near the periphery of the cover plate in a target from
a different test, exhibited much of the microstructure identified by Bless, et.al. [7].
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Fig. 13. Microstructure which occurs
in extended lateral flow.

In particular, examination of a fragment revealed heavily deformed tungsten grains,
intermixed with titanium diboride debris retained in the penetrator matrix. However,
an additional structural feature of the tungsten grains should be noted. What
appears as an agglomeration of submicron tungsten particles, in Fig. 13, is
believed to result from the dissolution of tungsten into the molten matrix and the
subsequent reprecipitation during rapid cooling. Although some of this tungsten
appears to coat undissolved tungsten grains, a significant fraction appears as fine
precipitates. If correct, this would support elevated temperatures during interface
flow, as proposed in Ref. 7.

Test results indicate that there are limits within which extended lateral flow
occurs. If target laminations separate freely after the penetrator arrives, the ceramic
is not highly resistant to penetration. At the other extreme, if the steel/ceramic
interface does not permit a flow of erosion products, the ceramic again is not
highly resistant to penetration. Minimizing damage to the ceramic is suspected to
be critical in initiating a lateral flow of erosion products, especially as the impact
velocity increases. The controlled accommodation of erosion products is suspected
to be critical in extending the duration of lateral flow at the ceramic. Current target
design is addressing both issues in order to achieve maximum ballistic performance
which is consistent with properties of the ceramic.

CONCLUSIONS

The investigation of extended lateral flow at a ceramic is, clearly, work in
progress. Although the result shown in Fig. 12 is encouraging, there is no reason
to believe that the ballistic performance in this early test was optimum. The ballistic
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performance of ceramics, and extended lateral flow in particular, is poorly
understood at the present time. Many aspects of this phenomenon need to be
investigated, including target design, velocity dependence, sensitivity to impact
location, sensitivity to impact obliquity, and scaling. With refinements, velocity
dependence should be found to correlate with ceramic properties. At present, the
clearest conclusion is that ceramics are capable of much higher ballistic
performance than is currently indicated by routine evaluation tests.
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1 Introduction

The material flow mechanisms which occur during ballistic penetration
regimes and their role in influencing penetration behavior are not fully
understood.

Penetration experiments at this laboratory in which tungsten single
crystal rods of high symmetry orientations were fired into semi-infinite
RHA targets showed that the penetration results were a strong function
of crystallographic symmetry, and that the best performing orientation,
the four-fold [100], exceeded current tungsten heavy alloy penetrators
and was comparable to depleted uranium (1). Preliminary examination
of recovered penetrators showed distinct differences in flow and failure
patterns as a function of crystallography (1,2). The observed flow pat-
terns are shown in Figure 1. These results are of fundamental interest
because in single crystal experiments all variations in geometry, ballistic
conditions, and such material parameters as density, grain size, etc. are
eliminated: crystallography is the single variable. Since the overall mac-
roscopic deformation geometry in all cases is eversion of the rod into a
continuous tube possessing a pattern of scroll-like foliations on the inner
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Figure 1 Geometry and flow patterns around nose of penetrator.

surface, the large differences in penetration must therefore arise from
the crystallography of the detailed processes operating in the initiation
and continuation of material flow in the lattice.

Preliminary characterization of the flow patterns and fracture
topography of the post-mortem specimens has been further extended
and now provides a basis for better understanding the mechanisms
which influence the penetration performance.

2 Experimental Approach

A synergistic approach was applied to characterization, utilizing optical
metallography, scanning and transmission electron microscopy, and X-
ray diffraction. The penetrators were embedded in semi-infinite RHA tar-
get blocks which were longitudinally sectioned. The residual back end of
the penetrator, typically about one diameter (-6mm) in length, rested at
the bottom of the penetration cavity surrounded by a thin layer of flowed
material which extended back along the cavity walls to form a continu-
ous back-extruded tube 1-3mm thick. Previous optical studies of these
sections demonstrated the effects of crystallographic orientation on the
general flow pattern during penetration and eversion (1,2), and provided
a spatial reference frame for correlating micro-structural information.
The large size of the steel target block sections limited scanning micros-
copy of the fracture surfaces to examination of separated fragments,
generally from the back-extrusion tubes. The unpolished halves of the
sectioned targets were cut up and prepared for transmission micros-
copy. Transverse and longitudinal TEM samples for each orientation
were obtained by standard thinning techniques. X-ray diffraction pat-
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terns of the polished metallographic sections were used to determine
the crystal orientation and provide lattice information at intermediate
resolution. To characterize the small, inhomogeneous residual penetra-
tor samples still embedded in massive blocks, Laue back reflection was
the only feasible method. Although the irradiated area is comparatively
large (about half a millimeter), by making a series of small, incremental
translations and comparing changes, the spatial resolution can be
improved by about an order of magnitude. The target block was
mounted in a special holder equipped with x and y micrometer transla-
tions. Once a reference point was established, relative positioning was
extremely precise and reproducible, and could be correlated directly
with optical macros.

Information from white-radiation diffraction is necessarily qualita-
tive but nonetheless Laue patterns can provide a wealth of information
about a deformed sample: orientation, lattice inhomogeneity (bending,
substructure, etc.), recrystallization, grain size, preferred orientation,
etc. This information was a major key in drawing together all of the
observations into a coherent picture of the deformation process.

3 Results

3.1 Transmission Electron Microscopy

Dislocation arrangements were examined in samples of all three sym-
metry orientations, in both transverse and longitudinal sections, except
for [110], where the only thinned sample obtained was transverse. More
detailed discussion of the TEM results has been presented elsewhere
(2), but the principal observations are summarized as follows.

The principal defect type observed was arrays of predominantly
screw dislocations of the type b = 1/2<111 >. All crystals contained dislo-
cation networks, sub-boundaries, and recrystallized grains, but the
detailed dislocation arrangements varied as a function of crystallo-
graphic orientation. Dislocations observed in the [100] and [111] crystals
were networks of pure screws or mixed dislocations with a large screw
component. Dislocations in the [110] penetrator were straight screw dis-
locations with short segments left by edge dislocations. Other types of
defects, such as twins and stacking faults, were not observed. There
was often extensive recrystallization, with freshly recrystallized material
adjacent to heavily deformed structures. However, due to the extreme
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inhomogeneity of the deformation, it was not possible to make direct
correlation between the actual TEM observation area and the macro-
structural flow pattern.

3.2 X-ray Diffraction

Observations for each orientation are summarized below.
[110] Penetrator

This residual penetrator was completely recrystallized except for a small
region at one corner of the back end. The material in the etched band
structure is polycrystalline, and Debye-Scherrer (D-S) rings from vari-
ous regions showed a variety of substructures ranging from sharp, equi-
axed recrystallized grains to broad cold-worked rings, generally with
heavy texture. The few single crystal regions were distorted and ambig-
uous and thus no orientation information could be obtained. Further
examination showed that the rear surface of the rod was a jumble of
irregular surfaces, implying that the residual rod was cracked irregularly
throughout as suggested by the cracks visible in the macro-section.

[1111 Penetrator
Diffraction patterns showed the clearly-defined residual rod to be a sin-
gle crystal, with little net lattice rotation except in the lobes near the front
edge of the rod. Material in the flowed regions was primarily polycrystal-
line, with strong preferred orientation, but there were also included
regions, primarily directly ahead of the residual rod, which were still sin-
gle crystals, although severely bent and deformed; see Figure 2.

%2

Figure 2 Diffraction patterns from [111]: (L) residual rod,( R) fragment embedded in
recrystallized material ahead of residual rod.
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[100] Penetrator
The most salient factor in the [100] X-ray results was the persistence of
single crystal character throughout the entire head of the penetrator and
well into the extrusion tube. Optical macros showed no clearly outlined
rod remnant, as seen in the [111] penetrator, but instead there was an
assemblage of blocky segments defined by large cracks, and through-
out much of the sample on a smaller scale there occurred a semi-contin-
uous network of fine, straight crack segments intersecting at right
angles. In the central residual rod, these cracks were parallel and per-
pendicular to the rod axis, but in the peripheral flow regions they
became respectively radial and parallel to the cavity interface.

X-ray analysis confirmed that the cracks were in all instances par-
allel to {100} cleavage planes. In the residual rod remnant, the diffrac-
tion pattern was always uniquely sharp and well-defined. Along the
penetrator axis directly ahead of the residual rod the orientation was
maintained and the spots were uniformly broadened without asterism;
see Figure 3. A traverse across the sample directly below the rod rem-

- -k

Figure 3 Diffraction patterns from [100]: (L) residual rod, (C,R) material ahead of
residual rod.

nant showed the lattice orientation changing continuously, correspond-
ing with the reorientation of the {010} cleavage cracks, with surprisingly
little asterism except in the vicinity of major cracks; see Figure 4.
Numerous sequences throughout the sample demonstrated that single
crystal reflections were obtained except in the vicinity of a few obvious
inhomogeneities such as the severe, localized bands found near the
back edges of the penetrator, where local recrystallization occurred.
Single crystal patterns from the immediate vicinity of major cracks or
similar inhomogeneities sometimes contained twisted, forked, or ginko-
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Figure 4 Stereograms of diffraction patterns taken in sequence across [100]
peripheral flow, correlating with cleavage cracks.

leaf spot shapes, indicating complex local bending, and superimposed
D-S rings from recrystallization might be seen, but in many other
instances uniform single-axis reorientation of the lattice occurred with a
minimum of inhomogeneity; Figure 5. These Laue patterns contained

uniform, continuously extended spots; when both ends of each spot
were plotted, two crystal orientations related by a single axis rotation
were represented, giving the limits of the continuous lattice rotation
occurring within the irradiated area.

Since the observation surface is an axial plane of the penetrator,
continuous lattice reorientation about the normal to the observation
plane is consistent with radial material flow. Along the left edge of the
penetrator this lattice'rotation can be documented continuously from the
nose back into the hollow extrusion tube for several rod diameters with-
out discontinuity, until the single crystal spots finally disappear in tex-
tured D-S patterns. Along the right edge an orientation discontinuity
occurs at a major crack near the residual rod, and a new orientation
begins. Examination of a large fragment of another penetrator, which
separated from the target block by fracturing away from a thin layer
adhering to the cavity surface, clarified this discontinuity. Figure 6
shows the convex surface, partially covered with sheaf-like packets. X-
rays of the packets showed broad single crystal reflections along with D-
S rings. Seen in three dimensions these individual packets, defined by
cleavage planes, appear to have sheared radially and also rotated in
varying amounts about a normal axis, in agreement with the lattice rota-
tions observed in the two dimensional axial surface of the first penetra-
tor.
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Figure 6 Convex surface of separated [100] residual penetrator.

4 DISCUSSION

From these observations, it is evident that the microstructural processes
operative in these three single crystal penetrators are quite different.

In the [111] rod, three <111> directions occur symmetrically at 70.5
degrees from the rod axis. Resolved shear stresses on these disloca-
tions are thus relatively low, resulting in a high yield strength, while
ample generation of dislocations available for interaction enhances
work hardening. As well, screw dislocations will tend to move outward
resulting in radial mass transfer toward the cavity walls. The well
defined shape of the residual rod, with a blunt, low-angle nose and
mushroom lobes, reflects this. The precise character of the few narrow
bands etched in the residual is undefined, but the location and direction,
along with the presence of large crystal fragments surrounded by
heavily deformed and recrystallized material just ahead of the residual
rod, suggests that separation of discrete material segments initiates
with these bands. Additionally, the inner surface of the penetration tun-
nel is wavy and pocked, suggesting radial impingement of discrete seg-
ments of penetrator material as the blunt nose of the remaining rod
forces these segments radially outward and then between the rod and
the cavity wall. Diffusion gradients at the penetrator surface and iron-
rich intrusions in cracks appear only in this sample, implying higher tem-
peratures than for the other orientations. Eventually the crystal seg-
ments recrystallize, perhaps repeatedly, with a strong preferred
orientation. All of these processes absorb a fraction of the total energy,
which thus becomes unavailable for forward penetration. Thus the crys-
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tallographic factors which lead to high yield strength, work hardening,
and superior stress strain characteristics in unconfined conventional
testing actually detract from penetration performance,

In the [100] penetrator, the material mechanisms are different. With
four-fold symmetry, all four <111> directions are equally stressed,
creating large numbers of dislocations able to react with one another.
One possible reaction (3) is the Cottrell reaction:

2 [111]+ 2[T11]=[T oo],

which produces a sessile dislocation. This sessile dislocation is associ-
ated with the initiation of {100} cleavage cracks in bcc crystals oriented
with a tensile stress axis along the [100] direction (4). Under hydrostatic
stresses, cracks would not open at once, but could be nucleated as
deviatoric stresses increase and material flow is initiated. It can also be
reasonably speculated that early creation of a large distribution of these
sessiles would inhibit subsequent work hardening. The smooth lamellar
bending and shear and the relative absence of substructure, complex
lattice distortion, and recrystallization evident in X-ray patterns from
much of the peripheral flow region indicate that the work hardening
expected from standard stress-strain behavior does not occur. In con-
trast to the [111] penetration profile, the [100] penetration tunnel is nar-
row and exceptionally smooth, and there is little evidence of interaction
between the penetrator and the target material. Rather than discontinu-
ously shedding finite material segments, the [100] rod is postulated to
flow by a smooth continuous process in which small, finite lattice ele-
ments defined by cleavage cracks undergo a combination of lamellar
bending and rigid rotation with little internal disturbance-a process
which is highly energy efficient, thus allowing maximum partition of
energy into forward motion, i.e. penetration. Such features as the
etched deformation bands at the back ends of the sample, which contain
heavily deformed and recrystallized material, seem likely to be a local-
ized artifact rather than a primary deformation mode. The persistence
of the rectangular crack pattern even through the curved foliations in the
extrusion tube (Figure 5) is strong evidence that lamellar flow of finite
entities with minimal lattice disruption is the continuing deformation
mode and that continuous reorientation of defined entities was complete
before recrystallization eventually occurred.

Again, standard stress-strain properties do not predict penetration
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results, since the [100] yield and work hardening curves are similar to
but lower than those for [111], while in ballistic penetration a highly effi-
cient alternative material flow mechanism occurs, absorbing less energy
and allowing the [100] penetrator to exceed the performance of the
[111].

For the [110] orientation detailed conclusions are more difficult
since the recrystallization is so extensive. In 2-fold symmetry, only two
<111 > directions are stressed and work-hardening dislocation reactions
are unavailable. Classically, [110] bcc crystals have a high yield but do
not work harden; at high impact velocities twins may occur. (5) The
TEM, SEM, and X-ray results all indicate that the penetrator material
has repeatedly recrystallized, deformed, and recrystallized again. The
nature of the etched bands, which were entirely recrystallized with a
strong preferred orientation, was not determined. The flow packets in
the (110) extrusion tube were unique in having a completely non-crystal-
lographic appearance; instead they resembled ductile, bifurcating
fronds. It seems possible that multiple fractures occurred very early, and
after yield ductile flow occurred with repeated recrystallization.

It is interesting to compare the observed modes occurring in sin-
gle crystal rods with the work of Magness(6) and Magness and Far-
rand(7) in several materials. Magness interpreted these results in terms
of the initiation of shear localizations, primarily adiabatic shear bands in
the deforming penetrator. Figure 7, taken from Magness, shows sche-
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Figure 7 Schematic of postulated flow modes, after Magness (6).
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matically the flow patterns he identifies.
Mode (b), late shear localization and discard, leads to the mush-

rooming and wavy cavity profile resulting from non-steady flow which
are associated with poor penetration performance, and are typical of
polycrystalline tungsten. The [111] flow pattern resembles this model:
some mushrooming and a wavy profile are definitely present, and the
few narrow bands present may be sites for discontinuous material sep-
aration.

The penetration cavity of the [100] rod resembles mode (c), like
that of the DU penetrators described by Magness. In the [100] case the
chisel-shape profile is absent but the tip radius is still narrow and the
geometry of the penetration tunnel resembles that of the early shear
and discard model. It appears that the successful performance of this
penetrator results from an extremely efficient flow mechanism initiated,
like the adiabatic shear localizations observed in DU, early in the flow
process, but on a much finer scale. This fine scale allows relatively
smooth, continuous initiation of flow which is energetically efficient.
Thus the deformation mode occurring in the [100] crystal is an alterna-
tive mechanism which extends the concept of penetration by early initi-
ation of energy-efficient shear to a microscopic scale.

The characterization of the [110] flow is less obvious, but the shal-
lower, wider cavity with relatively smooth walls may be consistent with
the stable, uniform flow model (a), modified by anisotropy. Further infor-
mation about the actual flow mechanisms would be needed to charac-
terize this orientation.

5 CONCLUSION

Single crystal penetrator tests have shown that crystallography, which
governs microstructural failure and flow mechanisms, is a strong deter-
minant of penetration behavior. Additionally, as previously pointed out
by Magness and others, classical quasi-static data do not necessarily
imply similar performance in ballistic penetration. Finally, the excellent
performance of the [100] single crystal penetrators has been shown to
result from a unique deformation mode in which work hardening is sup-
pressed and flow initiates at microscopic inhomogeneities which allow
small but finite crystal entities to shear and flow with minimal internal
deformation. This mode allows an energetically efficient uniform flow
which maximizes the fraction of total energy partitioned into forward
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penetration, resulting a deep, narrow, smooth walled penetration cavity
similar to the geometry of "chisel nose" DU penetrators, but by a mech-
anism different from adiabatic shear. Single crystal experiments provide
a unique opportunity to isolate the effects of crystal symmetry on micro-
structural deformation and study the basic material mechanisms
involved. This understanding will lead to more effective processing to
utilize and optimize the appropriate properties of existing materials and
can ultimately define a basis for designing novel materials and compos-
ites in the future.
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Ballistic-Environment Simulation Facility

Mr. Abraham Frydman* and Mr. Ara Abrahamian
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Weapons Technology Directorate, Mechanics and Structures Branch

2800 Powder Mill Road, Adelphi, MD 20783

Background: In the early 1940's, a group was formed at the National
Bureau of Standards (NBS) in Washington, DC to develop fuzes for
bombs, rockets, mortars, and grenades. This Ordnance Development
Division, was headed by Harry Diamond, a pioneer radio engineer who
developed the airborne weather radiosonde, ILS blind landing system,
radio beacon system, and other navigation aids. Its major accomplish-
ment was the radio Doppler proximity fuze. By 1951, the first large
gas gun was in use and in 1953, the Division was transferred to the
Army, renamed the Diamond Ordnance Fuze Laboratories (DOFL),
and attached to the Office of the Chief of Ordnance. In 1962, DOFL
became the Harry Diamond Laboratories (HDL), one of five laborato-
ries of the Army Materiel Command. The ballistic facilities in DC were
relocated to a specially designed research facility at Adelphi, MD in
1976. In the fall of 92, HDL was disbanded and the ballistic facility
was transferred and became part of the Mechanics and Structures
Branch (MSB) of the Weapons Technology Directorate of the ARL.

BALLISTIC SIMULATION METHODOLOGY

Interior Ballistics: Setback (linear acceleration) is the prime accelera-
tion of smooth bore munitions; while setback, angular acceleration,
and centrifugal acceleration relate to rifled weapons. Ballistic simula-
tors provide unique, in-house, laboratory operational evaluation of
devices1 that previously could be met only by expensive, time-consum-
ing field tests. Simulation of actual firing conditions enables the devel-

1 The word device represents any projectile or component that requires this type of
test. When the simulators were at HDL, device refered to a fuze or fuze component.
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oper to respond quickly and resolve R&D problems. Simulators are
also used in production tests to efficiently screen out manufacturing
flaws and to reduce the number of rounds required for field tests.

Chronology: The first setback simulator, built in 1951, tested the rug-
gedness of new proximity fuzes. An air gun was made from eight, 12'
long, gun barrels, bored out to 4" ID, and was assembled using copper
gasket seals. A 100 cubic foot, 125 psi air tank, supplied the propul-
sive force for a 20 lb. hardened steel bird 2 that housed the unit under
study. The experiment, simulating setback conditions, occurred in a
heavy-walled steel box where the bird impacted a lead target.3 The
device orientation in the bird was reversed relative to its orientation in
the projectile so that the deceleration force at impact acted in the
same direction as did the acceleration force due to weapon firing. The
bird acceleration in the air gun was low to minimize effects on the
device but achieve terminal velocities of a few hundred ft/sec. Bird
weight and muzzle velocity were varied to control deceleration. Peak
deceleration was determined by copper-ball accelerometry (a dent
technique). This simple, inexpensive method was used until 1965. It
is now known that for many devices, such tests were overly severe; a
prevailing philosophy was if it survives the air gun, it will survive
anything. The concept of the impact deceleration simulating the actual
launch acceleration is still paramount although we are more advanced
in terms of theory, instrumentation, data reduction and gas gun design
and usage. We can simulate a wide range of unique ballistic environ-
ments that are especially applicable to many devices. With the advent
of very high acceleration smooth bore guns, and, with the recent re-or-
ganization, the character of the ballistic experiments will change to ac-
commodate higher accelerations, heavier birds, and an ability to mea-
sure structural response and performance of a device during impact.

Setback Test Methodology.: The concept of setback testing is miti-
gated momentum exchange. Initial bird velocity is still provided by low
acceleration air or gas guns. A light aluminum or phenolic bird re-
places the heavy steel bird and a crushable energy-absorbing target
(mitigator) backed by a momentum exchange mass, MEM, replaces

2Bird will be used to refer to the projectile used in the simulation to distinguish it from
the projectile used in the field.
3Harry J. Davis, Impact Testing Using a Four-inch Air Gun and Lead Targets, Harry
Diamond Laboratories, TR-1383 (April 1968).
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the lead (fig. 1). The mitigator may be expanded or wound aluminum
honeycomb (fig. 2) or plywood; the MEM is either a solid metal mass
or a more involved mass-spring system. The mass of the bird and the
strength, density and shape of the mitigator determine the rise and
magnitude of the deceleration pulse; (springs, affect pulse rise and
fall) and proper selection of MEM assures that the bird will have zero
velocity after the impact event (rather than rebound as would occur if
the mitigator was against a rigid wall). This technique eliminates post-
test damage and provides immediate access to inspect the tested
item; a distinct advantage for chemical systems (e.g., power supplies).

An acceleration-time
No curve 4 for a flat nosed

Po,0,,,o (,id)aM bird that impacts
-------- .wound aluminum

o ,Mitigator honeycomb is shown
SM in fig. 3 along w ith a

Cn,, Fr~ont Lpredicted curve.
Typically, peak

FIGURE 1. MITIGATED MOMENTUM EXCHANGE. The deceleration is &20 K-g
bird emerges from the gun, crushes the mitigator, and but experiments range
comes to rest as the MEM carries off the momentum. from 400 g to 100 K-g.

In the case of wood mitigators, the
acceleration at the end of the pulse
often increases as the wood com-
presses and stiffens (bottoms).

MSB currently has two 'setback only'
simulators; a 4" simulator, utilizing
the 4" gun discussed above, and a 7"
simulator. 5 The 4" and 7" guns are
typically used in the 'vacuum' mode.
The bird is inserted into the gun
breech up to a restraining pin. An 0-
ring in the breech provides a vacuum
seal around the bird. A plastic dia-

FIGURE 2. ALUMINUM HONEYCOMB

41rvin Pollin, Impact Pulse Shaping, Harry Diamond Laboratories HDL-TR-1710 (June
1975).
5 Michael G. Otten, Development of a 7-in. Air Gun for Use in Interior Ballistic
Simulation, Harry Diamond Laboratories HDL-TM-75-13, October 1975.
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phragm (one or two mil .. ... ...................................

Mylar) covers the gun ' A '• ........... , . ... . ....... •........ • ; .. .• .- .. ....... ............. ; ...........

muzzle and is clamped
against another 0 -ring. 4 i ...... .. .. .- ----------- ............
The gun is evacuated ... .2 ...... ----------_• .......... '............ ........... . , . .... ....... . ............ i

roughin pump. Whe a vacuumro u g h in g p u m p . W h e n .i ........... . ............ ....... ......... ....... ......
S... .... ...... ..... t . ..... . .........

the restraining pin is....... ..................t..... .....
withdrawn, ambient air - " .
propels the bird dow n ... . .. ..., ... ...........
the gun, through the .
diaphragm and into the - 0.° - .0- 0.1 " 0.2 . 0.4 °" " ."

mitigator (which is set

in a tube, or on rails Figure 3. Typical Acceleration-Time Curve.
concentric with the
gun). The 4" gun is 96' long when used as a vacuum gun with muzzle
speeds of 530 and 700 ft/sec for 5 and 3 lb. birds. This is •93% of the
speed predicted by frictionless infinite-chambrage gun theory. The 4"
gun has a second breech, ;20' from the vacuum breech. The barrel
between the breeches is pressurized with helium to increase muzzle
speed. 6 The 7" gun is 304' long and uses vacuum only.

It is easy to install a temperature conditioned device in the bird just
seconds before firing the gun (in the vacuum mode) because the rear
of the bird is open to the room.

Instrumentation: Muzzle speed is measured by electro-optical tech-
niques. Knowing the physical properties of the mitigators and by
measuring the deformation of the mitigator after impact we can
compute a post-impact predicted rigid-body deceleration-time curve
based on this speed and crush.

Streak photography 7 in the 4" and 7" systems records the displace-
ment-time curve of the bird during impact. Rotating drum cameras are
used to avoid synchronization problems associated with rotating mirror
cameras. The 4" simulator employs a camera built to photograph

6 Herbert D. Curchack, Optimized Breech Location in the Harry Diamond Laboratories
4-Inch Gas Gun, Harry Diamond Laboratories HDLTR- 1983 (April 1982).

7Donald J. Mary, Errors in Streak Photography Measurements Caused by Subject
and Camera Misalignment, Harry Diamond Laboratories HDL-TR-1609 (August
1972).
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shock tube events and uses 2" wide film, one foot long. The 7" simu-
lator uses a CordinTM camera using 70 mm x 1 m film. Another Cordin
camera is mounted in a portable fashion for use in special situations.

A pattern of stripes was designed (to optimize computer processing)
and a master negative made. Prints from this negative are fastened to
the bird with photographic mounting tape. A portion of a streak photo-
graph of these stripes, taken with the HDL camera, is shown in fig. 4.
The streak picture represents a displacement-time curve of the bird
during impact. Originally the film was digitized manually on an optical

densitometer and
Distance the results typed

Bird Travel into a computer.
This process was

time consuming,
tedious and
restrictive as to
the quantity of
data that could
practically be

\Path of Front Time -- treated and was
of Bird Film Travel replaced by a

precision, high
Figure 4. Streak Film Image of Impact. resolution PDS

1010A densi-
tometer with a special transport to handle 70-mm by 1-m film strips. A
PDP-8/M computer processed more data in less time and increased
the precision and accuracy of the data. (The PDP-8M was recently
replaced by a 386 PC system.) A rasterscan program controls the
densitometer and the film transport to record position and density
values that is processed on a VAX computer using HDL generated
code. This yields displacement, velocity, and acceleration vs. time
records of the simulation. Because of the small capacity of the PDP-
8M, the amount of data per scan was limited to densities above a
threshold and much data were not used in determining bird motion.
The PC based system is not limited in data collection, and new code
will be written to increase precision and accuracy.

Pre-impact velocities from film data agree with the optical measure-
ments within 1%. Acceleration error on a good film (due to film
reading imprecision) is about 100 g for 100 psec reading intervals, 600
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g for 50 ptsec intervals, and increases significantly for smaller intervals.

Theory for honeycomb mitigators 8 : The conservation equations were
solved to obtain the motions of the bird, mitigator, and MEM as func-
tions of time. In order to do this, assumptions are made as to the
behavior of aluminum honeycomb. These assumptions are valid for
honeycomb up to z1100 ft/sec impact velocity. The assumptions are:
1) The mitigator crushes only at the impacted end.
2) The crush is columnar (fig

5).
3) The uncrushed mitigator

behaves as if it is attached
to the MEM.

4) The crushed mitigator
behaves as if it is attached
to the bird.

5) The crush front (the region
that separates crushed and
uncrushed mitigator) is
short compared to the
length of the mitigator.

6) The crush strength and
density of the mitigator are
uniform and constant along Figure 5. Mitigator section showing
the mitigator length. columnar crush.
Typical crush length vs. applied pressure curves (such as
calibrations supplied by the manufacture) show that the initial crush
pressure can exceed the rated crush pressure by 50% or more.
This is due to the fact that the mitigator maintains its strength until
the columnar folds are formed and only then does it start to crush.
However, mitigators used in impact experiments are tapered so that
the initial crush area is small compared to the major mitigator cross
section, and crush starts close to the rated crush strength.

7) The mitigator is long enough so that there is always uncrushed miti-
gator. When the mitigator length is too short, bottoming occurs and
the honeycomb behaves like a solid chunk of aluminum. This
occurs in aluminum honeycomb at strains of t80%.

81rvin Pollin, Controlled, Long Duration, Impact Pulses, International Congress on
Instrumentation in Aerospace Simulation Facilities (1979), 150-166.
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8) The energy associated with elastic waves is small compared to the
energy dissipated by mitigator crush. Elastic waves are believed
responsible for oscillations that appear in the measurements.

Using these assumptions, we formulate the problem as follows.
1) The equations of motion are required for only the bird and the MEM.
2) The bird gains mitigator mass as the mitigator crushes and the

MEM loses an equal mass.
3) Newton's law for the bird, (the force on a body equals the rate of

change of momentum) must contain a velocity multiplied by a time-
rate-of-change of mass term (hydrodynamic force) as well as the
mass times acceleration term. The hydrodynamic force does not
apply to the MEM because the loss of mitigator mass does no work.

4) The event ends when the bird and MEM achieve the same speed.
Actually, slight elasticity in the impact causes bird-MEM separation.
Theory of this elastic foot has not been developed. The effect of
the foot is to extend the fall time of the pulse by z50 ptsec. Some
experiments had railroad-springs in the MEM to increase the fall
(and rise) time. These were easier to predict because the added
elasticity 'swamped out' this foot.

Equation (1) is Newton's law for the bird; (2) Newton's law for the
MEM; (3) is mass conservation for the mitigator; and, (4) is momentum
conservation for the system

(Mb +mC)xb +prs(b _i,)2 =-F (1)

(+ m. )W.m = F (2)

mh=mu+ mC (3)
u (4)

(mb + m)Cb + (M. + mu )m = mbXb (4o

where
i is velocity, and Y is acceleration (variables)
m is the mass (variable)
s is the mitigator area at the crush front (function of mitigator shape)
p is the uncrushed-mitigator density (constant for a specific mitigator)
r is the ratio of crush travel to bird travel (constant for a specific

mitigator). It is a function of the ratio, d, of crushed mitigator density
to uncrushed mitigator density, r=1+l/d, ;1.2 for honeycomb.

F is mitigator dynamic crush force (constant for a specific mitigator))
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and subscript
b is for bird m is for MEM
h is for honeycomb u is for uncrushed honeycomb
c is for crushed honeycomb o is for initial

Equations 1 through 4 plus the area-distance relationship of the miti-
gator and the initial conditions are not solvable in closed form. They
are integrable on the computer in timewise steps; holding slowly
changing variables constant; updating them, and iterating.

Wood Mitigators: Wood mitigators are especially useful where a non-
conducting mitigator is needed for electrical purposes. The only wood
that has repeatable results is marine-grade plywood (plywood with
neither knots nor voids on any ply). Such wood has a crush strength
of =5000-psi, is considerably more elastic than honeycomb but will
start to bottom at strains of z30%. No theory has been formulated for
wood crush. Empirical results are used for predictions.

ARTILLERY SIMULATORS 9 :

The artillery simulator extends the impact concept to simultaneous
linear and angular accelerations as in projectiles fired from rifled bar-
rels. The angular velocity achieved is maintained for a time represen-
tative of the flight time of the actual projectile while devices are electri-
cally monitored. The technique is as follows:

Consider a hollow tube rotating about its longitudinal axis at a desired
angular velocity. The bird enters the tube at a prescribed velocity.
Within the tube, the bird stops its linear motion and accelerates its an-
gular motion until it has acquired the angular velocity of the tube. Fur-
thermore, during this process an electrical circuit is completed to con-
tinuously monitor a device within the bird. To do this we had to:
1) Provide the requisite linear velocity to the bird by use of a gas gun.
2) Construct a tube (spin-catcher) that can rotate at artillery angular

velocity.
3) Use mitigated momentum exchange to decelerate the bird while

minimizing the forces transmitted to the bearings
4) Provide electrical circuits from the bird to the spinning tube to re-

mote instrumentation. This is accomplished by longitudinal or front-
to-back electrical splitting of the tube while maintaining .physical

9 Herbert D. Curchack, An Artillery Simulator for Fuze Evaluation, Harry Diamond

Laboratories TR- 1330 (November 1966)
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strength. Contacts on the bird are connected internally to the de-
vice and are centrifugally or spring activated to contact the electri-
cally isolated sections of the tube. Each tube section is connected
to a carbon-silver slip ring and to the instrumentation.

In addition to 2" and 3" laboratory artillery simulators at Adelphi, two 2"
table-top simulators were built for on-line evaluation of fuze power
supplies and have been supplied to power supply manufacturers.10

SETBACK-DRAG SIMULATORS 1 1 ,12

In the simulation of TU • VT,.

sequential setback F SLOI,

and aerodynamic
drag, the bird C

emerges from the
air gun and impacts -E -----

a mitigator located RUNES (CTU
against a MEM as (1) Before Impact
in setback-only
experiments. This
simulation occurs :'.-
within an open-
ended catch tube of
circular cross M!"IWOR RIM CRUSHED

section (fig. 6). (2M)E, SEtback PhasL

Drag simulation 
is

obtained as follows:
The bird and MEM
are circular cylin- "--
ders. The bird is a
close fit with the 1. A,4s MMS DO M OA9 TUE. )Us L ROOM AIR PRESSING ON REAR 0,

inner wall of the UM 14 FAC OF 0 LOJECILIL.,.

catch tube, but the (3) Drag Phase
diameter of a Figure 6. Setback-Drag Simulation.

1°Donald J. Mary, The High-Spin Tabletop Artillery Simulator, Harry Diamond
Laboratories, HDL-TR-1900 (September 1979)
11 Irvin Pollin, Simulation of Sequential Setback and Aerodynamic Drag of Ordnance

Projectiles, Harry Diamond Laboratories HDL-TR-1811 (June 1977).
12 Donald J. Mary, A Setback-Drag Simulator, Harry Diamond Laboratories, HDL-TR-

1984 (February 1982)
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washer attached to the MEM is selected to obtain a desired clearance
between it and the tube. (The mitigator diameter is much smaller than
the washer diameter.) At the completion of setback, bird velocity is
close to zero, and the bird momentum has been transferred to the
MEM. The MEM motion increases the length of the cavity formed by
the bird, MEM and tube, causing the pressure to drop. The pressure
differential across the bird causes bird acceleration, or drag simulation.
Drag is determined by the relative motions of the bird and the MEM,
the cavity volume, the air leakage into the cavity around the washer,
and the bird mass. MEM mass is much larger than bird mass so that
little change in MEM speed occurs during drag simulation. Pressure
buildup in the cavity before impact is avoided by slots in the catch tube
(open to the atmosphere) that extend from the entrance of the tube to
the impact location. The drag profile is insensitive to moderate vari-
ations of the initial cavity volume and pressure. Data of bird displace-
ment vs. time are obtained by streak photography, from which setback
and drag are determined. Drags of a 4 g to 80 g have been obtained.

Current capabilities: Table 1 shows present capabilities. The peak
deceleration in these simulations is 100 K-g.

Gun Configuration Typical Conditions

ID Length Driver Spin Payload Speed Relevance
(in. (ft) (rps) (lb.) (ft/s)

2 9 Air 300 1/2 150 Power supply tests
2 32 Air 150 1/2 300 4.2-in, mortar

32 He 150 1/2 1100 Low-zone artillery
3 12 Air -- 1/2 200 Hi-g rocket w/drag
3 100 Air 300 1 575 Low-zone 8" howitzer
4 97 Air -- 2 575 High-zone mortar

61 He -- 2 1100 Med.-zone artillery
61 He -- 10 1500 Terminal ballistics

161 He -- 1 4000 Terminal ballistics
7 304 Air -- 7 850 High-zone mortar

Air -- 2 1150 Terminal ballistics
Air -- 1 1250 Terminal ballistics

Table 1. Some Capabilities Available at Adelphi, MD (1993)
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NEW WORK

New projects are directed towards extending payloads, pulse ampli-
tudes, and pulse times in the simulators to values closer to actual gun
characteristics; to improve the instrumentation by taking advantage of
state-of-the-art computer and data-acquisition systems; to assess the
structural response and performance of projectile components under
test; and. to simulate liquid-propellant gun oscillations in projectiles.

Mitigation techniques: There are two major limits regarding the use of
aluminum honeycomb as a mitigator. These are the maximum usable
crush strength, and a bird impact velocity effect that causes the honey-
comb to crush at both ends. We have reached both these limits, yet
demands for higher payloads, g's and velocity require extending
simulation capability. The cause of these limits and possible fixes are:

Strength: In order to obtain high g (>30 K-g) for payloads greater than
2 kgm, the strongest aluminum honeycomb that is available (nominal
8000 psi crush strength) is used. This material utilizes a large volume
of foil in its construction. As the material crushes, each column inter-
feres with an adjacent column and causes radially outward folds in the
mitigator. This unpredictable folding is not incorporated in our model.

We have obtained two samples of stainless steel mitigators with crush
strength of L20,000 psi. The model should hold for steel, as long as
we can determine the various mitigator constants. Experiments will
determine if stainless steel exhibits satisfactory crush.

Crush at both ends: As bird impact speed increases, the compressive
elastic wave in the mitigator strengthens. Upon reaching the solid
MEM, this wave reflects back into the mitigator and compression in-
creases. At some critical velocity (;1 100 ft/sec), the reflected com-
pressive force exceeds the crush strength and the mitigator starts to
crush at the MEM in an unpredictable fashion. The elastic oscillations
(that appear in the data), grow to be as great as the peak acceleration
as a result of alternate crushing at the bird and MEM interfaces. Per-
haps, we can match stress wave impedance at the MEM end, so that
the elastic wave is transmitted rather than reflected.

Several other deceleration techniques have been proposed (e.g.,
pneumatic, frictive) but have yet to be explored.
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NEW INSTRUMENTATION.

Measurement of bird deceleration inferred from MEM acceleration. 13

An accelerometer in the MEM is easy to install and instrument be-
cause the MEM is initially at rest, and by impact end, achieves less
than 10% of the bird velocity and less than 10% of the bird accelera-
tion. Hence, by measuring MEM acceleration, and by using equations
1-4 from the equations of motion, we can infer bird acceleration. This
method is inexpensive compared to the streak technique and would be
useful at contractor sites. However, upon bird impact, the MEM 'rang'
at its natural frequencies and swamped the rigid body signal. Once
ringing was controlled, several shots supplied reasonable data. The
project ended before completion because the sponsoring project was
terminated because of an international arms' agreement.

Optical Telemetry. An infrared optical communication system is under
development to monitor and transmit component data from a device
shot in the artillery simulator to a receiver near the muzzle of the gas
gun. The optical system is a true FM transmission system and the
receiver has true FM demodulation/high-speed A/D, 16 bit resolution.
The prototype transmitter has been repeatedly fired in the 4" simulator
at 50 K-g and has performed successfully.

Onboard Recorder. A one channel onboard measure-record-store
system is being validated for use in moderate to large caliber projec-
tiles. It is designed for ±100 K-g shock, high-frequency (140-kHz)
response, and samples at 1-mHz for 32 msec. A paramount applica-
tion of the recorder is to characterize the structural oscillations in the
bird during impact, so as to assess the feasibility of using simulators to
reproduce the structural oscillations developed in projectiles fired from
155 mm RGLP guns. Prototype experiments at 15 K-g for 2.5 msec,
20 K-g for 2.0-msec (fig.7), and 45 K-g for 1.0 msec, show a good
match exists between calculated and measured data. In some cases
the peak-to-peak g due to structural oscillation exceeded 70 K-g. The

13 Herbert D. Curchack, Measurement and Calibration of Impact Tests, Summit

Technologies - Final Report - Contract DAALO2-86-D-0021/DO-34 (Sep. 1990).
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Figure 7. On-board Accelerometer Readout.

prototype is packed in a 3" OD by 4" long housing and weighs &2 K-
gm. The main components are a _±100 K-g IES model-31 recorder and
a _±200 K-g ENDEVCO piezo-resistive accelerometer. The next steps
are to demonstrate repeatability, determine life at 20-30 K-g, and to
reduce weight, size and cost.
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Accumulated Damage and Fracture of Composite
Laminates Under In-Plane Loads

Dr. Iqbal Shahid and Dr. Fu-Kuo Chang*
Department of Aeronautics and Astronautics

Stanford University, Stanford, CA 94305

ABSTRACT

A damage mechanism-based failure model has been developed for
predicting accumulated damage and the response of organic matrix com-
posite laminates resulting from in-plane tensile and shear loads. Fiber and
matrix failure in the laminates were the primary concern of the study.

The proposed model comprises of a local and a global analysis. The
local analysis based on a unit cell element was developed for establishing
the relationship between the material properties of a ply in a laminate and
damage. Damage accumulation criteria were proposed for predicting the
extent of damage and the mode of failure in the laminate as a function
of the applied loads. The global analysis based on a nonlinear finite
element method was developed for calculating stresses and strains inside
the laminate and predicting the damage state for a given loading condtion.
A user-friendly computer code was developed based on the model. The
predictions based on the model agreed very well with existing data.

1. INTRODUCTION

Damage in fiber-reinforced composite laminates can appear at an
early loading stage and continue to accumulate inside the materials un-
til the laminates can no longer sustain the applied loads. Therefore,
the response of composites strongly depend upon not only the material
properties but also on the extent and the type of the damage inside the
materials. For laminates under tensile and shear loads, ply failure can
be classified into three basic modes: matrix cracking, fiber breakage, and
fiber-matrix shear-out. Matrix cracking is most likely associated with ini-
tial failure, and the fiber-matrix shearing and fiber breakage are related
to the final failure of the laminates.

Studies on modeling of the response of laminated composites be-
yond initial failure have been reported in the literature [1 - 7]. However,
the majority of these studies were primarily focused on matrix cracking
failure in cross-ply laminates under a uniaxial load. In this paper, a dam-
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age mechanism-based local-global failure model is proposed for predicting
the failure and response of laminated composites subjected to combined
in-plane tensile and shear loads. The model estimates the response of
composite laminates from initial loading to final failure and predicts the
extent of the damage inside the materials as a function of the applied
loads. Due to space limitations, this paper only summarizes briefly the
model. A detailed description of the model can be found in [8].

2. THE MODEL

Since the response of a laminated composite strongly depends upon
the mode of failure and the extent of the damage in the laminate, the state
of damage (the failure mode and the extent of damage) as a function of
loads and the relationship between damage and the material properties
must be established. Therefore, a damage mechanism-based local-global
failure model is proposed which consists of three parts: 1) constitutive
modeling, 2) damage accumulation prediction, and 3) stress analysis.

It was assumed in the model that each ply in a laminate with damage
could still be treated as a continuous elastic layer with degraded material
properties (the effective ply moduli and strengths). Hence, it is necessary
to establish the relationship between the effective ply properties and dam-
age to a ply in a laminate under consideration. A local analysis based on
a unit cell element was proposed in the model to characterize the effective
ply stiffness and strengths for a given state of damage.

In order to determine the constitutive equations of a ply in a lami-
nate, the damage accumulated inside the laminate has to known. Hence,
damage accumulation criteria were proposed to predict damage as a func-
tion of the applied loads. A global analysis based on a finite element
method was developed in the model for calculating effective stresses and
strains and predicting the state of damage in a laminate. A schematic of
the local-global model is shown in Figure 1.

2.1 Constitutive Modeling

A unit cell element was selected as the representative element of a ply
in a laminate for characterizing the effective stiffness and strengths of the
ply in the laminate. For matrix cracking failure, the state of damage in
a ply can be characterized by crack density 0. Hence, a two-dimensional
elasticity analysis for the unit cell was developed [8] for determining the
ply effective stiffness 'and strengths as a function of crack density (see
Figure 2). Within the unit cell, the analysis evaluates each ply one at a
time for a given crack density in the ply and takes account of the con-
straining effects of the neighoring plies on the cracked ply. Accordingly,
the ply constitutive equation including the effect of matrix cracking can
be established for each ply in a laminate. It is worth mentioning that the
effective ply stiffness due to matrix cracking may vary from ply to ply
depending upon the ply orientation of the laminate and the thickness of
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each ply in the laminate.

Corresponding to the effective ply stiffness, the effective strengths
with respect to crack density are defined as the minimum stresses required
to produce matrix cracks at crack density q. Therefore, using the unit
cell element, the effective ply transverse tensile strength Yt(o) and shear
strength S(O) were obtained based on fracture mechanics combined with
the aforementioned elasticity solutions [8]. The values of Yt(q) and S(O)
strongly depend upon the intralaminar fracture toughnesses G1, and GII,
of the ply, respectively, and upon crack density as well as the ply thickness
and the laminate ply orientation. It is noted that Yt(q) and S(O) may
also vary from ply to ply in the laminate.

As the load continues to increase, damage in other forms may develop
which will eventually result in a substantial loss of the loading-carrying
capability of the ply in relation to the applied load. Delamination, fiber
breakage, and fiber-matrix shearing failure are assoicated with the final
stage of laminate failure. Matrix cracking-induced delamination could
significantly further degrade the ply properties and results in ultimate
failure of the laminates. Therefore, the effect of such matrix cracking-
induced damage on the material degradation must be taken into account
for predicting the ultimate failure of the laminates.

Matrix Cracking

It was assumed that the ply degradation due to additional damage
could be characterized based on continuum damage mechanics [8]. As a
result, the effective ply stiffness matrix due to matrix cracking and matrix
crack-induced delamination is proposed as follows:(Q Q• 0 (Qzz(O) QXY(O) 0 (ds 0

Qm Qm 0 J dq~ 0x(~

0 0 M 0 0 () 0 0 1
(1)

where

= (2)

where the first matrix on the right-hand side is related to pure matrix
cracking failure and the second matrix is associated with delamination
resulting from matrix cracking. 0o is the matrix crack saturation density
of the k-th ply, and q is a material parameter dictating the rate of stiffness
degradation due to delamination failure. The value of q? is accordingly
related to the interlaminar fracture toughnesses of the laminate.
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Fiber-Matrix Shearing Failure

Depending upon the loading condition, fiber-matrix shearing and
fiber breakage may also occur after matrix cracking has been generated
in the laminates. If the ultimate failure of the ply is primarily due to fiber-
matrix shearing failure, additional degradation of shearing properties will
be needed for predicting the ply's ultimate failure. Accordingly, the ply
constitutive equation due to fiber-matrix shearing failure has the following
expression [8]:

CT .X Q X o 0 1 0 0 [.•

&Y = QM QM o 1 0

where a and Z are the effective stresses and strains in local material co-
ordinates. It was assumed that the rate of material degradation due to
fiber-matrix shearing failure was also dictated by ply interface properties.

Fiber Breakage Failure

Fiber breakage can also lead to catastrophic failure of the ply in the
laminate. If the ultimate failure of the ply is due to fiber breakage, it was
proposed that the stiffness degradation due to fiber breakage was associ-
ated with the extent of fiber failure area [8]. Hence, the ply constitutive
equations due to fiber breakage failure can be expressed as follows:

(X Q XQ 0 df 0

& = QM QM 0 0 d(4)
&XY 0 0 Gu 0 0 df

k k

where

df = e (5)

where Af is the estimated fiber failure area, and 6 is the fiber interac-
tion length for a unidirectional composite under consideration. 03 is a
parameter which controls the rate of material degradation due to fiber
failure.
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It is to be noted that if the ply stress-strain relationships are non-
linear, the above constitutive equations can also be modified to accom-
modate the nonlinear relations.

2.2 Damage Accumulation Criteria

There are numerous ply failure criteria based on ply strengths that
are available in the literature for predicting failure of a unidirectional
ply. The ply strengths are frequently treated as material constants. As
"a result, they can only provide an estimate of the "first ply failure" of
"a laminate. The damage state in the first failed ply and failure of the
subsequent plies in the laminate could not be determined.

In this model, the ply strengths in a laminate (the effective transverse
tensile and shear strengths) are no longer constants, but are in - situ
properties of the laminate. Their values vary from ply to ply in a laminate
and depend upon the state of damage. Accordingly, by combining the
effective ply strengths with the existing failure criteria, the damage state
and the failure of subsequent plies in a laminate can be predicted. In this
study, Hashin failure criteria [9] were adopted and modified for predicting
failure of laminated composites.

Matrix Cracking

For matrix cracking, the criterion has the following form [8]:

-Y 2 + ( 5))2 (6)

where &yy and &.y are the effective transverse tensile and shear stresses
in each layer, respectively. Note that when em reaches unity, matrix
cracking failure corresponding to a crack density is predicted.

Fiber-Matrix Shearing Failure

The criterion for predicting fiber-matrix shear-out failure can be de-
scribed as follows [8]:

( t ) + R O(O)) = (7)

where & is the effective ply longitudinal stress in the fiber direction
and Xt is the longitudinal tensile strength of a unidirectional composite.
Failure is predicted due to fiber-matrix shear-out when es reaches unity.
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Fiber Breakage

The failure criterion has the following form [8]:

) = 
(8)

Failure is predicted due to fiber breakage when eF reaches unity.

At 0 = 0, the ply strengths Yt(¢ = 0) and S(q = 0) correspond
to the initial damage of a ply under consideration. If the applied stress
field satisfies one of the criteria, the initial damage is predicted and the
mode of failure is identified. Both moduli and strengths of the failed ply
have to be modified based on the predicted type and state of damage.
The stresses would have to be recalculated and then be applied to the
damage growth criteria with the new effective strengths corresponding
to the next damage state. The procedure would be repeated until the
laminate could no longer sustain any additional load. The final failure
load is then predicted.

Accordingly, the major difference between the proposed modified cri-
teria and the original Hashin criteria is that the present criteria can not
only predict mode of failure, but also provide an estimate of the accu-
mulated damage, both of which are needed for the constitutive equations
(Eqs. (1-5).). It is to be noted that other failure criteria such as the
Tsai-Wu criterion could also be adopted with a similar modification for
predicting laminate failure.

2.3 Stress Analysis

A nonlinear finite element method was developed based on large
deformation theory to calculate stresses and deformations of composite
laminates under multiple in-plane loads [8]. The constitutive equations
and the damage growth criteria were implemented in the analysis.

3. COMPUTER CODE

A user-friendly computer code, designated "PDCOMP," has been
developed based on the study. For a given laminate under in-plane tensile
and shear loads, the code can provide the following information:

1. Stiffness degradation as a function of the applied load.
2. The failure mode and the state of damage as a function of the applied

loads in each layer.
3. The response of the laminate as a function of the applied loads.

The code can be obtained from F.K. Chang at the address given in
the first page.
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4. COMPARISONS

4.1 Laminates Without a Cutout

The measured and predicted responses of [45/90/ - 45/90/45/90/ -

45/9-0] and [60/90/ - 60/90/60/90/ - 60/9-0] laminates subjected to a
tensile load are shown in Figure 3. The test data were taken from [10].
Because of the ply orientations, the response of the laminates was dom-
inated by the matrix. Accordingly, a significant reduction was predicted
by the model once matrix cracking initiated. The predictions based on
the model agreed well with the test data.

The comparison between the measured and predicted in-plane shear
strengths of cross-ply laminates is presented in Figure 4. The experimen-
tal shear strengths were measured from a rail shear fixture [11]. Appar-
ently, the shear strength was very sensitive to the laminate ply orientation
and thickness. The predictions based on the model correlated very well
with the experiments.

For laminates under biaxial loads, the strength envelopes as a func-
tion of the biaxial stresses for AS4/3501-6 [90/ ± 45/0]s laminates were
measured by Swanson et al. [12]. Figure 5 shows the comparison between
the measured and the predicted strength envelopes. A good correlation
between the predictions and the experiments was obtained. Interestingly,
the laminates in the biaxial loading state could sustain higher stresses
compared to a uniaxial loading state.

4.2 Laminates With a Cutout

The analysis has also been extended to study the response and failure
of notched composite laminates. The measured and predicted ultimate
strength of AS4/938 [45/90/ - 45/0/30/ - 30/0/ - 45/90/45] (denoted
as "crown-i") composite laminates with a central slit and subjected to
a uniaxial load is shown in Figure 6. The width (W) to the slit size
(D) ratio was four. The test data were taken from [13]. The predictions
based on the model agreed very well with the test data for a wide range
of panel widths. Predictions based on the existing semi-empirical models
are also shown in the figure [8]. The data at W = 10 inches was used
to obtain constants needed in these models. The Mar-Lin model requires
two constants, but the others need only one parameter.

5. CONCLUSIONS

A damage mechanism-based local-global failure model has been de-
veloped for predicting the failure and response of laminated composites
subjected to tensile and shear loads. The model can estimate the damage
accumulated inside the laminate in terms of matrix cracking, fiber-matrix
shearing, and fiber breakage, and can also predict the residual stiffness of
the laminates as a function of the applied load. The predictions from the
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model compared favorably with the available experimental data.
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Figure 1. A schematic description of the proposed local-global failure
model.
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Figure 2. A unit cell element for analyzing matrix cracking.
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Figure 3. Comparison between the measured and the calculated effective
strain distribution for [45/90/ - 45/90/45/90/ - 45/9-0]s and [60/90/ -
60/90/60/90/ - 60/9-01, AS4/3502 composite laminates subjected to a
uniaxial tensile load. Data taken from [10].
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Figure 4. Comparison of rail shear strength of T300/976 between the
rediction based on the model and the experiments. Data taken from
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Figure 5. Comparison between the predicted strength and the test data
for a [90/ ± 45/0],, AS4/3501-6 composite laminate subjected to bi-axial
tensile loads. Data taken from [12].
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for AS4/938 composite plates subjected to a uniaxial tensile load. Data
taken from [13].
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Abstract. An understanding of damage development in ceramic
composite materials is critical to their successful application in high-
temperature structural components. This paper develops the surface
integral and boundary element hybrid (SIBEH) method for three-
dimensional fracture analysis in composite media. Application to the
problem of small crack growth in brittle composite materials is also
discussed. The surface integral method models fractures as a piece-
wise continuous distribution of displacement discontinuities. Using
superposition, this technique is combined with classical boundary
element methods to handle geometric boundaries, material interfaces,
and thermal effects. Ultimately, the project will determine the applied
stress required for crack initiation from inherent matrix flaws and
identify micromechanical parameters which promote tough failure
modes. Final results of this investigation will be useful in developing
guidelines for the manufacture and design of inclusion toughened
ceramic materials.

1. Introduction

For high-temperature structural applications, ceramic materials
offer high strength, low weight, and good thermal properties. However,
inherent brittle failure modes and notch sensitivity have precluded the
use of ceramics in critical structural components. Though it presents
formidable manufacturing challenges, the inclusion of ceramic fibers
provides opportunities for increased material toughness and desirable
failure modes through crack deflection, fracture bridging, and frictional
interface slip [1-3]. For these reasons, ceramic materials reinforced
with carbon and silicon carbide fibers are currently being tested for
aircraft and automotive engine components.
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Experimental observations show that ceramic composite
materials initially fail at several points in the matrix and along the
interfaces and that matrix cracks initiate from flaws with dimensions on
the order of the fiber spacing. These small cracks propagate,
coalesce, and form larger cracks, eventually leading to component
failure [4,5]. The behavior of these initial fractures determines the
active material toughening mechanisms and the component failure
mode. Most importantly, this damage evolution is strongly influenced
by micromechanical parameters such as the fiber-matrix interfacial
properties. Therefore, an understanding of small crack behavior is
necessary for the successful design of composite systems.

Previous investigations have demonstrated these phenomena
and have analyzed the influence of microstructural parameters on the
extension of 'large' cracks (i.e. crack length greater than several fiber
spacings). By considering energy and crack-tip stresses, these
analyses account for the effects of fiber bridging, frictional pullout, and
interface debonding and have supported experimentally observed
trends [6-10]. In addition, these investigations have identified
microstructural parameters which significantly influence material
toughness and have improved understanding of these mechanisms.

More recently, computational methods have been applied to
'small' matrix cracks (i.e. crack length on the order of the fiber spacing)
to enhance understanding of the initiation and development of damage
in brittle composite materials [11-18]. These numerical techniques can
more accurately handle the geometrical effects and toughening
mechanisms which dominate crack growth on this scale and which
have limited the application of analytical models discussed previously.
Though these techniques are more expensive, computational tools can
be used to verify or adapt more elegant analytical models.

This investigation expands on previous analyses by developing
the surface integral and boundary element hybrid (SIBEH) method to
model the effects of proximal fibers and interfacial slip on three-
dimensional matrix crack growth. This paper outlines the development
of this general computational tool and discusses its application to small
crack growth in fiber-reinforced ceramic composite materials.

2. The Surface Integral Method

The surface integral method models three-dimensional fractures
in linear elastic materials as a piece-wise continuous distribution of
displacement discontinuities. This technique resembles the indirect
boundary element analysis in formulation. However, the technique
derives from the more general concept that local material phenomenon
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can be efficiently modeled with dipole distributions and is based on
different fundamental solutions [19,20]. In various forms, the surface
integral method has been used successfully to model arbitrary two-
and three-dimensional crack growth, shear band formation in granular
media, and interfacial slip in composite materials. [17,21-24]

The governing equations express the stress or displacement in
the material surrounding the crack as a function of the dipole
distributions:

t(x) = n f -Eys(x,ý)8(ý)dA (1)

u(x) = r- y (x,C)8(ý)dA (2)

where t(x) and u(x) represent the traction and displacement
components at some point x in the media surrounding the fracture
surface Sc. Each integrand combines material parameters E, crack-
face displacement distribution 8, and a fundamental solution y. The
fundamental solutions give stresses and displacements due to
infinitesimal tensile or shear crack openings, represented by a force
multipole (a combination of dipoles) [23].

For many practical applications, an analytical representation for
the crack-face displacements cannot be obtained. Therefore, the exact
distribution is approximated in a piece-wise continuous manner by
dividing the crack surface into subregions over which some local
distribution is assumed. As in classical boundary element methods,
the local distribution is defined by the crack-face displacements at
specific points within each element, 8a, and shape functions, q1a. In
this formulation, the integral relations in (1) become summations of
integrals taken for each elemental region, Se,

t(x) = Een f sf ys(x,C)8$(e)(C)dA, (3)

8(S) o= ll•() 8" (4)

To determine the crack-face displacement distribution, a
collocation method can be employed in which the applied boundary
conditions are enforced at a distinct number of points on the crack
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surface [21]. This results in a linear system of equations relating the

crack-face displacements and tractions:

S= ti (5)

Cij = fn W s(X,Q)q(J)(Q)dAý (6)

where the coefficient matrix terms Cij represent the traction forces t at
collocation point I corresponding to unit crack-face displacements 8 at
collocation point J The integration in equation (6) is taken over the
elements, Se(J), enclosing point J.

The equation system expressed in (5) can be solved and the
results combined with assumed local shape functions to obtain the
approximate crack opening distribution. Stresses and displacements
at points in the surrounding media can then be expressed as a function
of the crack-face displacement distribution:

t(x) = f WJnjE 7 (x, )TI(J)(t)dAý (7)

U(X) = _J 7 d(x'0)1(J)()dAý (8)

In general, the integral equations in (6) can be handled using
Gaussian quadrature. However, when the collocation points at which
the displacements and tractions are evaluated coincide, the singularity
of the fundamental solution makes the integral intractable. For these
cases, subtraction of a rigid body motion transforms the integral so that
it is defined in a Cauchy principal value sense and can be evaluated
numerically [17,23]

Despite these complicated integration procedures and its
limitation to linear elasticity, the surface integral method provides
several advantages over conventional numerical techniques. Because
the fundamental equations are based on multipole solutions
(representing infinitesimal fracture events), the surface integral
technique accurately captures the stresses singularities near the crack
tip. Crack-face displacements and stress intensity factors can be
determined with a limited number of low-order crack elements. More
importantly, only the fracture surface need be discretized, reducing
required degrees of freedom and simplifying crack growth logistics.
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3. The SIBEH Method

To include the effects of component and model boundaries, the
surface integral method can be combined with other numerical
techniques using superposition. A hybrid concept combining the
surface integral and finite element methods has been used to
successfully model fractures in the presence of finite component
boundaries, material interfaces, and thermal strains [17,19,23,24].

Development of the surface integral and boundary element
hybrid (SIBEH) method is presented here for application to small crack
growth in composite materials. The fracture model described above
will be superposed with boundary element models of the surrounding
matrix and proximal fibers. Although it results in fully-populated,
coupled coefficient matrices, this formulation avoids the complicated
volumetric finite element meshes required for this problem. In addition
to the fracture surface, only the material interfaces, planes of
symmetry, and loading surfaces will be discretized.

The governing equation of the boundary element method
derives from Kelvin's point force elasticity solutions and relates
boundary tractions and displacements [24]. After discretizing the
boundary and approximating the tractions, T, and displacements, U,
with local shape functions, il, a system of equations can be formulated
with the general form:

H ijUj = GjjTJ (9)

H iJ = 813cWJ) + f p*(x,ý)li(J)(ý)dA; (10)

Gjj = W) u *(x'C)il(J)()dA, (11)

where p* and u* represent the fundamental boundary element
solutions, c(J) is a geometric constant, and Se(J) represents the
boundary elements enclosing the point J. For simplicity, all domain
integral terms, such as body forces, thermal strains, and local plastic
flow, have been omitted from (9) for this development.

Stresses at points within the model can also be expressed as a
function of the boundary values, Uj and Tj, and derivative kernel
functions d* and s* [25]:
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t(x)=,_ { Uj4 d*(x,ý)ri(j)Q)dAý + (12)

Tjj0) S*(x,C)rl(J)(C)dAj

The superposition process used to couple the surface integral
and boundary element models is shown schematically in Figure 1. The
problem of a cracked, finite body under applied crack-face and
boundary tractions is solved by combining both techniques.

The surface integral method, shown in Figure 1 b, models the
fracture in an infinite homogeneous domain. Integral equations (5)
relating the crack-face displacements and tractions at collocation
points along the fracture surface are constructed as before. However,
corrective tractions, t*, (evaluated along the image of the fracture in the
boundary element model) must be subtracted from the applied
tractions, t, to ensure satisfaction of the boundary conditions.

[C]{1} = {t - t*} (13)

The corrective tractions can be expressed in terms of the boundary
element displacements and tractions using relation (12).

{t*} = [D]{Ube} + [S]{T-T*} (14)

The boundary element method, shown in Figure 1c, models the
finite, uncracked domain. In a similar fashion, the integral equations
(9) can be constructed with the necessary subtraction of corrective
surface traction T* from the surface integral model and equations (3-4).

[H]{Ube} = [G]{T-T*} (15)

{T*} = [A]{1} (16)

Displacements along the boundary of the original problem will
be the sum of displacements from both models [22].

{U} = {Usi} + {Ube} = [B]{51 + {Ube) (17)
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Him/ t i (a) Fracture Model
Boundary tractions, T
Crack-face tractions, t

II

(b) Surface Integral Model
Crack-face tractions, t
Corrective tractions, t*

+ , -T*

T
(c) Boundary Element Model

Boundary tractions, T
Corrective tractions, T*

Figure 1. Surface Integral and Boundary Element
Hybrid (SIBEH) Method

Combining (13-16) and substituting (17) gives the complete equation
system, relating crack-face and boundary displacements to the applied
tractions.

([C]+[S][B]){8} - [S]{U} = {t} - [D]{T} (18)
([G][A]-[H][B]){8) + [H]{U} = [G]{F}
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Though developed for the case of applied tractions, the resulting
system of equations can be also be used to solve mixed boundary
value problems, after partitioning the matrices in (18) and rearranging
terms.

By combining the crack modeling capabilities of the surface
integral method with the versatility of the boundary element method,
the SIBEH method provides an efficient tool for linear elastic fracture
mechanics. The technique is particularly well suited for fracture
propagation analysis, since only a limited number of the terms in
equation (18) need to be recomputed as the crack surface is extended.

4. Application to Small Crack Growth in Brittle Composite
Materials

The focus of this investigation is to determine the stresses
required to propagate small matrix cracks in fiber-reinforced ceramic
materials. In addition, the fiber stresses and interfacial slip are
monitored to help identify optimum ranges for interfacial properties. A
properly tailored interface should allow sufficient slip to protect fibers
from excessive crack tip stresses and still provide frictional resistance
for significant toughness and strength. These tasks are being
accomplished using the SIBEH method outlined above.

For this investigation, a sample material consisting of lithium
aluminosilicate reinforced with continuous silicon carbide fibers is being
studied. Although the model developed is general, use of these
specific material properties will facilitate comparison of results with
published experimental data and application of the findings to a
common material combination [4,5]. Both matrix and fiber materials
are being modeled as isotropic, linear elastic solids.

Matrix crack initiation begins from penny-shaped flaws located
within a hexagonal array of fibers (Figure 2), a situation identified
experimentally as a common configuration for crack initiation [4,5].
The fracture is extended in a quasi-static manner from the initial flaw to
a crack with radius spanning several fiber rows. To reduce the
problem size, only the shaded portion of the problem shown in Figure 2
is modeled directly. Unit cells enclosed by symmetric boundaries and
by uniform displacement loading planes have been constructed to
handle the fracture at various stages of growth. For the case
considered here of static tensile loading, additional reduction has been
accomplished using symmetry about the fracture plane.

Since the crack is contained solely in the matrix material and
along the interfaces, the fracture and surrounding media can be
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MATRIX MODEL
MATRIX •CELL

MATRIX
FLAWI

Figure 2. Crack Initiation in Fiber-Reinforced
Composite Material;

modeled with the SIBEH method as outlined in Section 3 above.
Fibers have been added to (18) as distinct boundary element regions
and coupled with the matrix model by the variables at the interface
[25]. Interfacial slip between regions is evaluated iteratively after each
fracture growth step.

When traction conditions at any point along the interface are
compressive with sub-critical shearing stresses, the fiber and matrix
regions are linked by enforcing displacement equality and traction
continuity at that node. For interfacial points at which the shear forces
exceed the critical value or for which the normal stresses are tensile,
appropriate traction conditions will be applied to both boundary
element regions [17]. The interfacial conditions are summarized here:

(i) Bonding: Gn < 0, T < tCRIT (19)
(ii) Frictional Slip: O•n < 0, T> TCRIT
(iii) Separation: a1n < 0

85



Other interfacial models such as Coulombic friction can easily be
incorporated for cases in which constant shear conditions do not apply
[26,27]. This approach models the three-dimensional crack-tip
shielding (and related crack pinning) and approximates the effects of
interfacial slip.

Several numerical and modeling issues are currently being
addressed concerning the accuracy of the fracture model. Meshing of
the surface integral model must accommodate variations in
displacement and stress intensity factors. Similarly, the boundary
element mesh on the symmetric and interfacial boundaries must
capture the stress variation created by proximal and abutting cracks.
This is being accomplished through both mesh and element refinement
and will be evaluated with convergence tests and by comparison to
analytical models.

On a more conceptual level, the SIBEH method is based upon
material models (e.g. isotropy) and on geometric assumptions (e.g.
matrix porosity and interface reaction zone) which will be less accurate
at small scales. Although these are important assumptions on the
scale of this investigation, the current model will provide an improved
three-dimensional solution which can be used as a basis for further
analyses and can be linked to existing analytical models.

Despite these issues, the SIBEH model provides an accurate
and efficient method for modeling arbitrary fracture growth in
composite media. With regard to ceramic composite failure, the
technique will be used to improve analytical models by quantifying
three-dimensional effects and to identify optimum interfacial properties
for toughness and 'graceful' failure modes. Final results of this
investigation will be useful in developing guidelines for the manufacture
and design of toughened ceramics. In addition, the method developed
can easily be extended to more general cases of three-dimensional
fracture in composite media.
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Abstract

The objective of this paper is to address the basic issues in formulation of
a rational analytical model and estimate the process induced damage in
thermosetting resins. The basic premise of the model is that the large
fluctuations of stresses and temperatures within the disordered gel are
responsible for the nucleation and initial growth of microdefects.

Introduction

Performance of polymer matrix composites is strongly affected by
microdefects nucleated during the curing process. The size and density of
these 'birth defects' depend on the chemistry of polymerization, thermal
gradients in the matrix and the attendant stresses. Optimization of the
curing process, i.e. minimization of the performance limiting birth defects, is
an important task with far reaching consequences. The inherent complexity
of the phenome-non, coupling exothermic chemical reactions, heat transfer
and damage evolution defies easy solutions. This complexity is
augmented by the disordered and evolving microstructure of the
polymeric matrix and its effect on the local fluctuations of stresses.

The objective of this study is to provide an analytical model
describing the coupled physico-chemical processes referred to as
polymerization. More specifically, the analyses are focused on chemical
reactions during which the crosslinks are formed and ruptured. Primary
interest of this study centers on the influence of the inherent disorder of the
incipient gel network on the rupture of crosslinks. An illustrative problem is
considered in an attempt to replicate the dominant trends in mechanical
behavior during the polymerization process of a generic thermoset resin.
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Polymerization of thermosetting resins

Polymerization is a complex process during which some of the colliding
polyfunctional monomers endowed with sufficient kinetic energy react and
form irregular three-dimensional networks. On the microscale the process
is observed as a change in connectivity (related to the degree of cure) as
the colliding monomers link into m-mers. On the specimen scale the
material changes it phase from a viscous fluid to a glassy solid. The
crosslinking reaction is exothermic and is accompanied by chemical
shrinkage. Since the crosslinking is a random process the gel structure,
temperature and stresses are random fields susceptible to large spatial
and temporal fluctuations.

The initial stage of the polymerization process is governed by the
formation of gel aggregates (nodules) at many locations by diffusion or
reaction limited aggregation. Aggregates are dispersed in sol which is still
a continuous phase. As reaction proceeds further the number of
aggregates increases but their size remains approximately same (with
diameter of 0.01 to 0.1 gm, Erath and Robinson, 1963). Finally the
aggregates become sufficiently numerous to fill most of the space and are
rendered immobile. The intrinsic linear length of the micro-structure is
established by the liquid phase of the process.

The subsequent phase of the curing process is characterized by
random bonding between the polymer aggregates. This process can be
approximated by a bond percolation model (Martin and Wilcoxon,
1989). Individual aggregates behave as large renormalized monomers
fixed in distinct sites of a 3-D lattice. Bonds connecting aggregates
comprise of several polymer chains. As the reaction proceeds aggregate
clusters of random sizes and shapes appear in the system. In contrast to
the spatial correlation length R (average radius of the aggregate) which
remains constant, the connectivity correlation length 4 (related to the
average cluster radius) gradually increases and finally diverges at the
connectivity threshold (Martin and Wilcoxon, 1989). The divergence in the
average size of the clusters heralds the actual gel point of the material.
This stage is discerned by a very steep increase of the viscosity of the
system and the attendant immobilization of the curing mass. Hence, the
actual gel point of the material can be identified with the rigidity percolation
threshold of the renormalized lattice (p=pce) at which the polymer attains
shear strength.

In gelation it is necessary to differentiate between two gel points.
First defines the phase transition in connectivity within a single aggregate.
Second is characterized by large changes in the physical macro-
properties of the resin. Sol-to-gel transition is identified mea-suring shear
moduli of the curing polymer (Adolf and Martin, 1990).
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Continuum model

Polymerization is a process that combines chemical reaction of cross-
linking, heat transfer and deformation attributable to chemical and thermal
shrinkage. The rate of change of the bond density p is defined on the
basis of the collision theory as

dp =1 -p)- • exp/ for p> (1)
at tN iT kbT

where to, kb, Uo, Pce and 0i are the atomic free vibration period,
Boltzmann constant, activation energy, elastic percolation threshold (i.e.
connectivity at sol to gel transition) and Helmholtz free energy in the i-th
bond. Also N and Nt are the total number of links and the number of load

carrying links respectively. Arrhenius term tjlexp[-(Uo -4i)/kbT]
represents the probability that a bond will form (or rupture). The
probability that a bond will rupture (second term on the right hand side of
(1)) depends on the energy stored in the link. In the period following the
sol to gel transition, forces in the bonds of the gel exhibit large fluctuations
due to disordered geometry. This term can be rewritten as

IN, U,,,'D

1 tl exp( t-i' exp( U° 2 j exp(Ž---(c)d(D (2)
kbT ) kbT)f kbT

assuming Uo and Tto be constant. In (2) j(,D) is the probability density
function of free energy stored within individual links. Molecular bonds
belonging to a highly stressed crosslink store significant magnitudes of
free energy 0 and are prone to catastrophic failure under the effect of
thermal energy fluctuations.

To illustrate the salient aspects of the problem consider a polymer
slab of constant thickness 2ho infinitely extended in the (x, z) plane. The
surfaces of the slab y = +h are exposed to the autoclave temperature
which does not change with respect to x and z coordinates. Accordingly,
the temperature Tis a function of the time t and coordinate y (defining the
position across the slab thickness) only. The heat conduction problem is
therefore governed by the partial differential equation (Ciriscioli and
Springer, 1990, Mallick and Krajcinovic, 1992a,b)

d(pCT) =d dTl pHT dr=- T I(3)
dt dy[ dyj2N-9dt
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The second term on the right-hand side of (3) represents the heat
liberated during the exothermic reactions. It is proportional to the degree
of cure a = F = ,(1- r,)p + r,, where r is the density of inter-molecular
bonds and r, a constant. HT is the total exothermic heat energy
generated during the course of the reaction. The density p, thermal
conductivity KT and the specific heat Cp are assumed to be constant
(independent of p and 7).

A number of experimental and analytical studies have been
devoted in the past to the estimation of cure stresses in polymer matrix
composites (Hahn and Pagano, 1976, Loos and Springer, 1983, Bogetti
and Gillespie, 1989, etc.). These studies focused on the formulation of
continuum phenomenological models needed to determine the evolution
of the effective elastic moduli of the resin with the degree of cure.
However, the elastic moduli of a crosslinking polymer are dependent on
the time in a much more complex way. The complexity is attributed to
two different but simultaneous phenomena: viscoelastic behavior of the
polymer and changing connectivity of the network during polymerization.
Beyond the gel point the network behaves as a viscoelastic solid. The
viscoelasticity of polymers can be related to the dynamics of a single
molecular chain and the interactions between adjacent chains. Long
polymer chains, tangled up like spaghetti, must uncurl as they deform
producing delayed elastic effects. Since the incipient gel is a self-similar
structure, a change in the degree of cure results in a mere change in scale
of the cluster size. Thus, with a suitable rescaling of time, it is possible to
derive a universal relationship for the time-dependent viscoelastic
behavior of the curing polymer referred to as the time-cure superposition
principle (Adolf and Martin, 1990).

The boundary conditions in the present problem requires that all slab
boundaries are free of transverse stresses i.e. -a(y = ±h0 ) = 0. The only
non vanishing macro-stresses a and U, are equal to each other. The
constitutive relationship of the material relating the average stresses
Ux(= Uz) to the eigenstrains e * is (Mallick and Krajcinovic, 1992a,b)

21 (yt)+ (p), 2 d-x(y, s) +R3 (y, s) d+K eff ( dG0 (P•)d
2( )3K(p) ds + EY (S) ds

+2 r(t-s.) 2 '(y, s +3 ) de*(ys)&= 0  (4)f G3K(p,) d ds

where

"f 2 dax(y,u) dE*(yu)
3K()~s (yf r,( ,P)du (5)S 0s p 3K(p) du du
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In (4) and (5) Gr and G. are the relaxation and equilibrium components
of the shear modulus respectively, Kthe cure-dependent bulk modulus
and [Fr a non-dimensional parameter defined as Fr(t) = Gr(t)/ Gr(O)

(Martin and Adolf, 1990). In addition, E* is the isotropic eigenstrain in the
material due to chemical shrinkage and thermal dilatation. During the
chemical reaction of bonding two reacting monomers must reduce their
distance in order to attain the equilibrium position. Since the molecules are
restrained from moving, the molecular chain experiences chemical
shrinkage (Trznadel and Kryszewski, 1992). The chemical shrinkage in the
slab is assumed to be proportional to the number of formed crosslinks p
above the gel point. Consequently (Mallick and Krajcinovic, 1992a,b),

E* = "Eth - "Th = aT (T- Te)/- "Ef (p - pe) / (1- p,,) (6)

where ýf is the final shrinkage strain at the end of the cure (p=l), aT the
thermal expansion coefficient for the material and T = T,, at the elastic
percolation threshold.

A system of three coupled integro-differential equations (1), (3) and
(4), subject to obvious initial and boundary conditions, suffices for the
determination of three unknown variables •, T and p. The coupling
occurs through probability of link forming and rupture in (1), heat liberated
during chemical reaction (3) and connectivity dependent material
properties and eigenstrains (4). However, the most prominent source of
complexity is the fact that the rate of ruptured bars depend on local
energy distributions (0Pi) which cannot be easily determined. To solve the
problem and determine the number of links ruptured during curing it is
necessary to compute spatial and temporal distribution of forces in the gel
molecule.

Force-displacement relationship in a polymer chain

Mechanical behavior of Iong polymer chains is in an essential manner
dominated by its large scale (length). In order to establish the "stiffness" of
the chain it suffices to consider only the change of conformation and its
effect on the flexibility. During stretch a polymer chain passes through a
sequence of a discrete equilibrium (minimum free energy) states each one
of which corresponds to a particular conformation. In the course of the
stretching process there is very little change in internal energy stored within
the bonds. The change in the free energy is almost entirely attributed to
the change in the probability of a particular conformation and the attendant
change of the entropy.

Consider first a freely-jointed chain (neglecting valence angles and
constraints of internal link rotations), consisting of n links (segments) of
length t, which is fixed at one end. The chain is formed by adding links in
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a perfectly random fashion (random walk). The probability i'(r)drthat the
other end will be found within the interval (r, r+dr) (see Meares, 1965)
must therefore be Gaussian, i.e.

V(r) = 47rr2(fil3F/J exp(-fl r') (7)
where r is the shortest distance between two ends, while

#=L(±]v:(8)
gives the reciprocal of distance r at which VI(r) is maximum.

The entropy of a single, freely jointed chain is in statistical mechanics
defined as

S=kblnoInv(r)] = C- 3kb r 2  (9)

2nC2

where C is a constant. The force in the chain is then,

d4 T dS - 3 kbT=- rT r -T n2 r(10)

The linear force-displacement relation (10), with a temperature
dependent "spring" constant, is derived assuming small displacements,
i.e. that r<<ne/V-3 (Meares,1965). For larger displacements the
probability density function Vf(r) is defined in terms of the inverse
Langevin functions rendering the force-displacement relation highly
nonlinear. Results indicate that the linear expression (10) is highly accurate
forfrrlne<0.3 r/ne•<0.3.

In actual chains the bonds do not rotate freely. Skipping the details of
the derivation available in Meares (1965) it suffices to state that, in the
linear range the expression (10) retains its validity if the parameters n and
i are computed from an equivalent random chain. The influence of the
crosslinking is a more complex problem which will not be discussed in
this paper.

Force transmitted by a crosslinked network is derived from the free
energy which combines competing influences of the internal energy and
entropy. The relative significance of these two terms changes during the
curing process. In an equilibrium (ordered) microstructure the internal
energy term dominates. Parameters of an ordered solid can be derived
from the properties of the constituent atoms. Parameters of dissipative
(disordered) microstructures depend on the texture which is several
orders of magnitude larger than constituent molecules. In the initial phase
of the linking between two adjacent aggregates the developing network
can be obviously classified as a disordered structure since its properties
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depend on the chain length rather than on the constituent molecules.
Consequently, the deformation of very flexible chains before crosslinking
is governed by entropic elasticity discussed above. System is highly
deformable and if the stress on the chain is maintained the chain reverts to
the original (most probable) conformation converting the excess energy
into heat. As the crosslinking progresses the bond between two adjacent
aggregates transforms into a network characterized by a relatively small
deformability. The relative importances of internal energy and entropy
change at the expense of the entropy. Assuming deformation to be small
it is assumed that the relationship between the force and the displacement
remains linear (for small extensions) albeit with a changed "spring"
constant. The new "spring" constant should be obviously determined
from the crosslinked network (density of chains, crosslinks and the
properties of individual chains). Thus, neglecting changes of the "spring
constant" k and using the force-displacement relation (10) free energy
stored in the i-th link is

S = kr- (11)

Distribution of the free energy in the network

As already stated the polymerization of a thermoset resin can be
modeled by the bond percolation on a central-force lattice. The only non-
zero temperature and stress gradients are directed along the thickness of
the infinite slab and the tensile stresses can occur only in the (xz) planes.
Thus, the slab can be approximated by a stack of independent lattices
parallel to its mid-plane. Numerical simulations on a plane, square lattice
were considered by Mallick and Krajcinovic (1992b). However, to
preserve the actual distance between the nodes at 0.05 gm and be able
to consider slabs 50 cm long the network should have 1014 nodes
rendering simulations impossible.

The only reasonable manner to solve the problem must involve a
scaling law allowing predictions for large lattice on the basis of the
simulations performed on smaller lattices. The current problem is further
complicated since the estimate of the rate at which the links rupture (1)
requires knowledge of the distribution of forces (energies) in individual
links (2). The complete histogram n(fL) of force distribution (signifying
number of bonds subjected to force f in a lattice of size L) exhibits a
multifractal behavior. The statistical moments of the force distribution

[M]m =Ifilm f If mn(fLp)df o- Ly(m) (12)
i 0

where the sum is taken over all links in the backbone of the gel. The
distribution is multifractal since the exponents are a nonlinear function of m
(Hansen and Roux, 1988, Hansen 1990, etc.).
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The derivation of the scaling law (12) for all statistical moments of the
free energy distribution in the links of the gel backbone in the
neighborhood of the percolation threshold and the off-critical states
requires much more space than allotted to this paper. The result of this
lengthy derivation for the case of a constant energy density ensemble is
that the exponents (12) defining the force distribution near the percolation
threshold were derived in form

y(m) = 0.75 + 0.5 1m + 0.87 exp(-O. 676m) (13)

It is important to notice that in (13) y(O) = 1.62 = Db (scaling for the
backbone mass), y(2) = 2 (constant energy density) and y(oo) -* 00

(size effect).
In the off-threshold regime, i.e. for p between Pce and 1 the scaling

exponents were derived using the method discussed in Roux and
Hansen, 1989) as

y(m) 2 - i[1.25 -0.5 1m -0. 87 exp(--O. 676m)] (14)

i = ln(4) I n(L) ,with 4 being the correlation (coherence) length.
The statistical moments of the distribution of the free energy stored in

the links of the lattice scale as

[Mm] = qmp(DA)dD LE(m) (15)

0

where

z(m) i.[-1. 25 +1.03m + 0. 87 exp(-1. 35m)] (16)

Finally, expanding the exponential function into a Taylor series the
integral in (2) can be rewritten using the multifractal formalism in form of a
convergent series

((I)d(I Lz(m) (17)f .kbT" •__M![kT

Numerical results

The computations are based on the properties of a commonly used
epoxy resin, diglycidyl ether of bisphenol A (DGEBA). The parameters
defining the physical properties of the resin are given in Mallick and
Krajcinovic (1992a,b). The equations (1), (3), (4) are integrated
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numerically. The space coordinate (y) is discretized by a finite element
procedure to solve the nonlinear heat diffusion equations (3) coupled with
the kinetic rate equation (1). The time (t) is discretized by a finite difference
scheme to compute the stresses from the nonhomogeneous integral
equation (4).

1.2 T

1.0 - (X

0.8 p

0.6

0.4

0.2

0.0 P .K

0 2 4 6 8
time (hours)

Fig. 1 Time dependence of normalized temperature (TTff), degree of
cure (a), density of crosslinks (p) and density of ruptured crosslinks (pR) at

the center of the slab (y=O).

The viscoelastic stresses (Zx) are computed for different cross-
sections of the slab (Fig. 2). The stress at the center of the slab is
significantly higher than that at the surface. All stresses in the slab decay to
an equilibrium value near the end of the cure cycle.

Summary and conclusion

A two-scale analytical model is formulated to estimate the effect of
microstructural disorder on the nucleation of microdefects in thermosetting
resins during cure. The physico-chemical processes during curing are
defined by spatial and temporal changes in temperature, stress and
crosslinking. The evolution of these three fields as a function of time and
space are determined on the macro-scale by the equations of the heat
diffusion (including the source term due to exothermic reaction), rate of
chemical reactions (formation and rupture of individual crosslinks) and the
viscoelastic deformation of the polymerizing media.
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Fig.2 Spatial variation of viscoelastic stresses.

The objective of the study was to demonstrate that the knowledge
of average values of stresses and temperatures during the process of
gelation in thermoset resins are not sufficient to compute the process
damage. The damage attributable to the curing process is directly and
inherently related to large fluctuations in the stress fields and the level of
microstructural disorder. To determine the stress concentrations it is
necessary to consider the influence of the microstructural inhomogeneity
on the spatial distribution of stresses. This is achieved by considering the
self-similarity of the network structure during the course of gelation.
Percolation theory provides the framework for performing quantitative
analyses of the nature of the disorder statistics. The scaling laws derived
from the multifractal consideration of the gel network define the influence of
the size of the system on the growth rate of defects. The microscale and
macroscale models are coupled through the connectivity variable defined
as the fraction of existing crosslinks. The proposed formulation is applied
to an initial boundary value problem to study the temporal and spatial
curing of a slab of resin exposed to a specified autoclave cure cycle. The
stress-strain law is derived on the basis of the time-cure superposition
principle and relaxation-integral equations in terms of cure-dependent
elastic moduli and shrinkage strains. Computations indicate that the
magnitude of the stress is higher at the center of the slab and is
responsible for higher density of defects in form of ruptured crosslinks.
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PLASTIC FLOW AND DAMAGE IN A TUNGSTEN BASED

COMPOSITE

G. BAO, Z. LIN and K. T. RAMESH

Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218

Abstract-A micromechanics study is carried out on the plastic flow and
damage in a tungsten heavy alloy comprised of a continuous pure tungsten
phase in a relatively soft tungsten-nickel-iron "matrix". The heavy alloy is
modeled as a dual-phase composite, with the tungsten phase approximated by
aligned, uniformly distributed and equal-sized particles. Stress-strain curves of
the composite under uniaxial compression are computed numerically using
several cell models representing different tungsten particle shapes. It is found
that without damage the overall stress-strain behavior of the composite is
essentially independent of the particle shape. However, the character of the
local plastic deformation changes dramatically with the inclusion geometry.
Two simple formulae are given that approximate the overall flow behavior of
the undamaged composite in terms of the tungsten volume fraction and the
behavior of the individual phases. For a composite sustaining debonding at W-
W grain boundaries, a damage evolution model is proposed based on the
Weibull statistics. It is shown that the stress-strain behavior of the alloy under
quasistatic tensile loading is controlled by two competing trends - strain
hardening and debonding softening - both evolve with the tungsten volume
fraction and the applied strains.

1. INTRODUCTION

Tungsten "heavy alloys" are dual-phase metals that have a unique
combination of mechanical and thermal properties: high strength, high
density, moderate ductility and outstanding thermal conductivity. This
suite of properties makes this class of materials attractive candidates
for energy penetrators in advanced anti-armor systems [1]. Typically
these materials have a relatively high tungsten content, providing the
high strength and the high density; a comparatively ductile second
phase provides the composite with some overall deformability.

Tungsten-nickel-iron (W-Ni-Fe) heavy alloys are usually fabricated
by liquid phase sintering of mixtures of elemental powder containing
80-98 wt. % tungsten, nickel and iron [2, 3]. The resulting
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microstructure consists of spheroidal body-centered cubic (bcc) grains
of pure tungsten embedded within a face-centered cubic (fcc) W-Ni-Fe
matrix. For the high tungsten contents that are of commercial interest,
the tungsten particles coalesce to form a microstructure consisting
largely of contiguous tungsten "grains," although the softer phase is still
conventionally termed the "matrix" phase. The size of the tungsten
grains is typically 30 - 60 [tm, which allows the present study to remain
within the framework of continuum plasticity theory.

This paper presents a micromechanics study of the plastic flow and
damage in a tungsten-nickel-iron (W-Ni-Fe) alloy under uniaxial
loading, with the intent of gaining some fundamental understanding of
the deformation and failure in tungsten heavy alloys. In particular, the
intent is to develop a predictive capability for the uniaxial stress-strain
behavior of the composite using cell models. This study is one part of a
more general investigation into the deformation and failure of dual-
phase solids under quasistatic and dynamic loading. While this paper
examines specifically the stress-strain behavior of a tungsten heavy
alloy under quasi-static loading, the basic findings shed some light on
more complex problems encountered in the processing and use of
dual-phase alloys in general.

Theoretical study of deformation and failure of dual-phase, power-
law hardening solids has attracted many researchers, simply because
this class of solids embraces a wide range of engineering materials
including metal alloys and composites. The microgeometry of a dual-
phase solid is usually taken to be of the inclusion-matrix type, with the
inclusion phase uniformly distributed in the matrix. Assuming perfectly
bonded interfaces, the overall stress-strain behavior of a dual-phase
solid can be predicted using either a Mori-Tanaka mean-field approach
[7, 8], or a three-phase self-consistent model [9-10], or a dual-phase
cell model [11, 12]. The overall stress-strain behavior of a composite
sustaining a uniformly distributed damage can also be predicted using
a dual-phase [13] or a three-phase [14] finite element cell model. The
finite element cell models (which are used in the present work) have
the advantage that local stress and strain distributions can also be
calculated. These distributions are important in determining the
initiation and development of localized deformations such as adiabatic
shear localization.

There are several possible damage mechanisms in tungsten heavy
alloys including cleavage of tungsten grains, void growth in the matrix,
debonding at tungsten-tungsten (W-W) grain boundaries, and sliding at
tungsten-matrix interfaces. It has been found that the interface
between tungsten grains and the softer W-Ni-Fe matrix is usually
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strong; few cracks have been observed at the tungsten-matrix
interfaces or within the tungsten grains even at large plastic strains [4].
Bonding at the tungsten-tungsten grain boundaries, however, is
relatively weak [5], causing debonding cracking to occur at W-W grain
boundaries perpendicular (or nearly so) to the tensile loading direction.
As a result, the plastic flow stress of a W-Ni-Fe alloy under tension has
been found to be lower than that under compression. This paper
examines first the composite behavior under compressive loading,
since the tungsten heavy alloys are often used in penetration
applications where the stress state is predominantly compressive with
a superimposed shear. The effect of W-W grain boundary debonding
on the tensile behavior of the composite is then probed using a
Weibull-type damage model coupled with finite element cell model
calculations.

This paper is organized as follows. Dual-phase cell model
calculations are described in Section 2, with the emphasis placed on
the comparison of results from cell models that represent different
shapes for the tungsten particles. In Section 3, systematic predictions
of stress-strain curves corresponding to uniaxial compression are
presented. Two simple formulae that relate the overall composite
behavior to the tungsten volume fraction and to the material
characteristics of the individual phases are obtained. A damage
evolution model is proposed in Section 4 linking the fraction of grain-
boundary damage to tungsten volume fraction and the applied strains.
Predictions are made for the tensile behavior of the alloy based on the
damage evolution model. The implications of the basic findings in this
work are briefly discussed in Section 5.

2. DUAL-PHASE CELL MODELS
From a microstructural viewpoint, tungsten heavy alloys are nearly

ideal model materials. Due to the near spherical shape and the high
volume concentration of the tungsten phase, the microgeometry of a
W-Ni-Fe alloy is relatively regular, as shown schematically in Fig. la.
For the purposes of this study, the tungsten heavy alloy is
approximated as a dual phase composite comprised of aligned,
uniformly distributed and equal-sized tungsten particles embedded in a
W-Ni-Fe matrix; both matrix and tungsten grains are assumed to be
isotropic. The tungsten particles form a continuous network and are
assumed to be perfectly bonded to the matrix. It is also assumed that
the particles are packed in a hexagonal array so that, by translating in
all possible directions, a unit hexagonal cell consisting of a single,
axisymmetric tungsten particle embedded in the tungsten-nickel-iron
matrix can realize the whole composite body. The hexagonal cell is

103



further approximated by a cylindrical cell in order to form an
axisymmetric cell model, which is computationally advantageous. The
volume fraction of the particles, f, is taken to be the ratio of the particle
volume to the cell volume. The axisymmetric cell shown in Fig. lb is
constrained such that the cylindrical surface remains cylindrical and the
ends remain planar. For overall uniaxial stressing, the average normal
stress on the ends is U, and the average normal tractions on the
cylindrical surface and the shear tractions on the cylindrical sides and
the ends are zero.

W-Ni-Fe z

r

W-Ni-Fe Tungsten
matrix particles

(a) (b)

Fig. 1. The tungsten-nickel-iron heavy alloy in (a) is modeled by an
axisymmetric cell in (b).

As with most metals, the uniaxial stress-strain behavior of each
individual phase can be characterized by a power-law type relationship
between the stress y and the axial strain F. Specifically, the Ramberg-
Osgood curve (Fig. 2)

()no
_---ao + -I(1)

is used for the tungsten phase. Here the stress exponent is n0 = 11.75,
ao = 0.132, a0 = 1 GPa is the initial yield stress, E0 = 400 GPa is the
Young's modulus, and Eo = ao/Eo. The parameters used in equation (1)
were evaluated using the quasistatic compression results in [15] on
pure polycrystalline tungsten. Likewise, the plastic flow behavior of the
softer W-Ni-Fe phase is described by the Ramberg-Osgood curve
shown in Fig. 2:
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-- =(2)

Here n1 = 1.97, a, = 20.7, al = 300 MPa (the initial yield stress), E, =
140 GPa is the Young's modulus of the matrix, and s- = (Y/E1. These
latter material properties (except for the modulus) are obtained from
the experimental data on a material with the matrix composition in [16].
It should be noted that the stress-strain behavior of the tungsten phase
and the matrix phase in other W-Ni-Fe alloys may differ from that
defined in (1) and (2). This is due to the fact that the alloys may be
made using different processing routes, may have different ratios of
nickel content to iron content, and may have experienced different heat
treatments or prior thermomechanical processing. Further, direct
measurement of the matrix properties as obtained in [16] is
complicated by the difficulty of choosing an appropriate grain size for
the comparison material. Nevertheless, the cell model developed here
is rather versatile in that the plastic flow behavior of the two phases
can be defined by any available stress-strain curves, and therefore it is
potentially possible to deduce the behavior of the matrix from the
measured behavior of the composite (using at least two known volume
fractions) and the known behavior of the polycrystalline tungsten.

2

1.5

0o 1 S~ W-Ni-Fe

0.5

0 "

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
E

Fig. 2. Uniaxial stress-strain behavior of the hard tungsten phase and the relatively
soft W-Ni-Fe phase.
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To mimic the microgeometry of the dual-phase alloy, and more
importantly, to reveal the influence of particle geometry, three different
particle-matrix shapes (shown schematically in Fig. 3) are used in
calculating the overall stress-strain curves of the composite. In the first
approach, the junction between tungsten particles is taken to be
spherical, and the resulting cell model A (Fig. 3a) consists of a soft
spherical W-Ni-Fe "inclusion" surrounded by the hard pure tungsten
phase. The second approach (cell model B) assumes that the isolated
W-Ni-Fe phase is cusp-shaped as in Fig. 3b, with the concave surface
generated by a quarter of a circle rotating around the z-axis. In both
model A and model B, the W-Ni-Fe phase assumes the position of an
"inclusion." The third cell model (model C) shown in Fig. 3c is
constructed by putting a squeezed tungsten sphere (partly spherical,
partly cylindrical) in the middle, with the W-Ni-Fe phase filling the rest
of the space. Model B and model C can be viewed as interchanging
the "inclusion" and "matrix" phases. In all three models, the tungsten
phase is taken to be continuous, a close approximation to the real
microstructure in tungsten heavy alloys containing high volume
fractions of tungsten.

I Model A Model B Model C

WN-F

(a) (b) W -F (c)

Fig. 3. Cell models for dual-phase alloys with different particle-matrix geometries. In
(a) the softer W-Ni-Fe matrix is taken as spherical while in (b) it is assumed to be
cuspid. In (c) the tungsten phase has the shape of a deformed sphere.

Fig. 4 presents the predicted overall composite flow stresses
against applied strains for a tungsten heavy alloy with a tungsten
volume fraction f = 0.94. The stress-strain curves for the pure tungsten
phase and the W-Ni-Fe phase are also shown in Fig. 4 for comparison.
The dashed lines represent the predictions using cell model A and C,
while the solid line is that using cell model B. The small difference
between the solid and dashed curves indicates that the effect of
particle shape on the overall flow behavior of the tungsten heavy alloy
is essentially negligible. This is in contrast to the behavior of ceramic-
particle-reinforced metal matrix composites, where similar
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computations show that the shape of the nearly rigid ceramic particles
has a significant effect on the overall flow behavior of the composite
[11]. This phenomenon, which appears to be manifested also in other
tungsten-based composites with high tungsten volume fraction [17],
may be attributed to the fact that the W-Ni-Fe phase is much softer
than the hard tungsten phase which forms an essentially continuous
network in the tungsten heavy alloys. At sufficiently large strains the
morphology of the deformed composite (under uniaxial compression) is
essentially controlled by the deformation of the tungsten grains
themselves, with the matrix behaving as a space-filling medium.

2

1.5 Composie, f =0.94

a0 1

0.5

0

0 20 40 60 80 100 120

S/I 0

Fig. 4. Uniaxial stress-strain curves for a tungsten heavy alloy under compression
obtained using two different cell models. The tungsten volume fraction is f = 0.94.
Also shown are the stress-strain curves of the two individual phases.

The local behavior of a dual-phase solid is in general complex,
since it is critically dependent on the size, shape and distribution of the
individual phases. For instance, although the overall stress-strain
behavior of a W-Ni-Fe alloy is essentially independent of the shape of
the tungsten particles, as demonstrated in Fig. 4, the local stress and
strain distributions are found to change quite dramatically with the
particle shape [17]. Specifically, the local plastic deformation in the W-
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Ni-Fe matrix phase in model C is more localized than that in model A
where the soft W-Ni-Fe phase is spherical.

3. THE COMPRESSIVE BEHAVIOR

To benefit the users of tungsten heavy alloys, systematic finite
element calculations are carried out to predict the overall stress-strain
behavior under uniaxial compression. The plastic flow behavior of the
tungsten and the W-Ni-Fe phases are defined by equations (1) and (2),
respectively. The volume fraction of the tungsten particles is taken to
be within the range 0.7 _< f _< 0.96, a range that covers all of the useful
W-Ni-Fe systems. Due to the fact that the major application of tungsten
heavy alloys is as penetrator materials undergoing large plastic
deformations, the maximum applied strain in the calculation is chosen
to be 0.8. The shape of the softer W-Ni-Fe phase is taken to be
spherical, since the geometry of tungsten particles appears to have
little effect on the overall stress-strain behavior, as discussed in
Section 2.
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Fig. 5. Uniaxial stress-strain curves for a W-Ni-Fe heavy alloy under compression
with applied strains up to 0.8. The tungsten volume fraction of the alloy is in the range
0.7 _< f _< 0.96. The stress-strain curves of the two individual phases are shown for
comparison.

Fig. 5 shows the predicted overall stress-strain curves for these
heavy alloys with tungsten volume fractions f ranging from 0.7 to 0.96.
The curves all have shapes similar to that of the tungsten phase owing
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to its high volume fraction in the alloys. It is also evident that not only
the flow stress but also the stress hardening exponent changes with f.
This reflects the fact that the two phases undergoing plastic
deformation have quite different hardening behavior.

The shape of the curves in Fig. 5 suggests that the overall uniaxial
stress-strain behavior of the W-Ni-Fe alloys can be described by a
relation of the Ramberg-Osgood type:

--==+-+ (3)
S0 UN aN j

where F, is the same as that defined in (1), UN is a reference stress, a
is the coefficient, and n is the stress exponent. Clearly, the parameters
a, n, and •N are functions of the tungsten volume fraction f, and of the
material characteristics of the two phases. Guided by the formula given
in (3), we find that within 2% error, the curves in Fig. 5 can be fitted by
taking

aff) = OXof + oa(1 -f), (4a)

n(f) = n[ao +a,(1 -f)+a 2(1-f)2 +a 3 (1 -f) 3 ], (4b)

and U(f) = (Yo[bo +b(1 -f)/2 +b2(1-f)+b3 (1 -f)3/2]. (4c)

For the particular material characteristics chosen here for the pure
polycrystalline tungsten phase and the soft W-Ni-Fe phase, the
corresponding values for the parameters ai and bi for use in eqn. (4)
are given in Table I.

Table I. Values of the parameters ai and bi in eqn. (4)

ao al a2 a3

1.0 -3.535 9.788 -11.437

bo bl b2 b3
0.976 1.246 -4.018 2.8

Note that equation (4a) for a is just the rule of mixtures. The value
of UN for 0.7 < f < 0.96 is only slightly below or above unity. The
expression for n in equation (4b), however, is markedly different from
the rule of mixtures. The values of n given by (4b) are below the
predictions of the rule of mixtures for 0.7 < f < 1, indicating that the
softer W-Ni-Fe phase has a strong influence on the plastic flow
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behavior of the alloys (although the shape of the soft "inclusion" has

relatively little effect).

When the applied strains are large, the elastic strains in both
phases can be neglected. Consequently, the stress-strain behavior of
the tungsten phase and the W-Ni-Fe matrix phase can be
approximated by pure power law relations

Yw= (Zo 
(5a)

and = J . (5b)

In equations (5), aw and ew denote stress and strain in the tungsten
phase and as and es are stress and strain in the soft W-Ni-Fe matrix
phase.

A basic feature of the tungsten heavy alloys is that the tungsten
phase forms a continuous "network"; the W-Ni-Fe phase is mostly
isolated. Therefore, the average strains in the softer W-Ni-Fe phase
can be taken to be the same as in the tungsten phase, i.e., E, = F, = Z,

where Z is the remotely applied strain. The average stress in the
composite can be related to the stresses in the tungsten phase and the
W-Ni-Fe phase by

-= f G, + (1- )(6)

Combining equations (5) and (6) yields a simple formula for composite
flow behavior at large strains

U -
1/ ( - I,

" "o (7)

Equation (7) can be used to predict the overall stress-strain
behavior of the tungsten heavy alloys as determined by the tungsten
volume fraction and the characteristics of the individual phases. It is
evident that at large strains, equation (7) gives fairly accurate
predictions over a wide range of the tungsten volume fraction [17].
Equation (7) may also be used to extract the flow behavior of the
matrix material from the measured stress-strain curves of the tungsten
phase and the composite since measuring the matrix flow behavior
under the appropriate microstructural constraints is rather difficult.
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4. DEBONDING DAMAGE

The tungsten-tungsten grain boundaries in a W-Ni-Fe alloy formed
during liquid-phase sintering are relatively weak, causing debonding to
occur at relatively low applied strains [5]. The spatial distribution of the
initial defects at W-W grain boundaries is likely to be quite uniform over
a large volume of the alloy; the size of the defect, however, varies from
place to place. Consequently, upon tensile stressing of the alloy, some
of the W-W grain boundaries perpendicular to the loading direction are
debonded first simply because they contain large initial flaws. Since the
matrix is more ductile plus the tungsten-matrix interface is strong, the
debonding crack often arrests once the whole contact area is
completely debonded. The debonding-cracking process depends on
many factors, especially the strength of the W-W grain boundary. To
gain insight, in this study, the detailed debonding process at each
individual grain boundary is neglected. Rather, a grain boundary is
modeled as either perfectly bonded or completely debonded; the
evolution of damage is therefore represented in term of the population
of the debonded contacts.

Fig. 6. Schematic of a tungsten-nickel-iron heavy alloy sustaining debonding damage
at tungsten grain boundaries.

Assume that the equal-sized tungsten grains are aligned along the
tensile loading direction (Fig. 6). Then each grain has six contact sites
among which only two are perpendicular to the loading direction.
Under uniaxial tensile stressing, the grain boundaries perpendicular to
the loading direction can debond, while those parallel to the loading
direction are unlikely to be debonded since they are subjected to
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compression. To model the level of debonding damage quantitatively,
we define a non-dimensional parameter p: the number of debonded
grain boundaries over the total number of grain boundaries that are
perpendicular to the loading direction. The parameter p represents the
population or fraction of debonded grain boundaries; it usually
increases with the local stress level which is in turn controlled by the
applied stress or strain. In addition, it increases with the contact area of
W-W grain boundaries since the probability of having a sizable defect
is larger when the contact area is larger. We thus propose a Weibull-
type model linking p to the area of a single W-W contact and the
applied strain T

p = 1 - exp[-I3(T / Ic)] (8)

where cc is a reference strain; m is a parameter similar to the Weibull
modulus reflecting how rapidly p changes with E; P3 is a dimensionless
parameter representing the contact area between two tungsten grains.
Obviously, the damage model given by (8) is analogous to the Weibull
statistics for brittle materials [18]. It gives the right trends: p equals zero
if 03 or - is zero; p approaches unity when E is large.

The nondimensional parameter P3 is defined as the area A of a
single contact between two tungsten grains normalized by A0 the
maximum cross-section area of a grain perpendicular to the loading
direction. To obtain P3 as a function of the tungsten volume fraction f,
consider the tungsten grain depicted in Fig. 6. It consists of a cylinder
of radius r and two identical spherical caps mimicking a "squeezed"
sphroidal tungsten grain. The parameter P3 is then given by

P A 7r-' b (9)

It can be shown that P3 defined in (9) is related to the tungsten volume
fraction f by

1.5f = + .1-132(10)

Note that for a fixed tungsten volume fraction, the total contact area is
dependent on the grain size: the smaller the grain, the larger the total
contact area. Such a size effect will not be considered in the present
study.
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To illustrate the practical significance of the damage model, the
experimental data given in [5] was used to obtain m = 1.6, cc = 0.077
taking f = 0.74 and the grain size a0 = 35 jim. It is quite remarkable
that the model predictions of p for the W-Ni-Fe alloy with three different
tungsten volume fractions all agree well with the experimental data, as
can be seen from Fig. 7. It is obvious that the damage model given in
(8) captures not only the dependence of p on the applied strains E, but
also that on the tungsten volume fraction f. It is true that the damage
model proposed here is still an empirical one; nevertheless, it can be
used to predict quite accurately the damage population p as a function
of f and E. It can also be used in conjunction with the finite element cell
model to predict the effect of damage on the tensile behavior of the
alloy [19].

f =890
Q"f =78'

cý 0.75
.2

o 0.5
U)CL

E 0.25
CU

0

0 0.1 0.2 0.3 0.4 0.5
Applied Strain, E

Fig. 7. Comparison between the model predictions of p using equation (8) and the
experimental measurements shown as points. The solid lines are predictions for f -
0.74, 0.78 and 0.89 based on m = 1.6 and ec = 0.077.

Based on the damage evolution law developed above, a finite
element analysis was carried out for the composite tensile behavior
using a three-phase cell model [19]. Shown in Fig. 8 are the overall
tensile stress-strain curves of the debonding damaged tungsten heavy
alloy for f = 0.86, 0.9 and 0.94 for applied strains E up to 0.2. The
corresponding stress-strain curves of the undamaged alloy are also
displayed for comparison. These predictions show that the softening
effect of debonding damage is more profound when the applied strains
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Sand the tungsten volume fractions f are large. It is also clear that
without damage, the overall plastic flow stress always increases with
the applied strains E and tungsten volume fraction f, a hardening
behavior common to many composites. These two competing trends -
hardening and softening - are exemplified by the curves with f = 0.94.
It is worth noticing that a peak appears on the stress-strain curve of the
damaged alloy with f = 0.94. Similar softening phenomena has been
found in metals due to void growth and in metal matrix composites due
to reinforcement cracking and debonding [14].

S~ f=0.90S~ f=0.86
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0 0.05 0.1 0.15 0.2

Applied Strain, '

Fig. 8. Predicted stress-strain curves for the heavy alloy with progressive damage.
Comparison of the curves with and without damage for f = 0.86, 0.90 and 0.94
indicates the two competing trends of strain- hardening and damage-softening.

5. CONCLUDING DISCUSSION

Tungsten heavy alloys are good candidate materials for making
penetrators in advanced antiarmor systems. To achieve the high
performance required in this application, the fundamental relation
between material microstructure and thermomechanical properties
needs to be established. Due to the complexities of the deformation
and failure modes in tungsten heavy alloys under impact loading
conditions, a general predictive model is yet to emerge.

To set the stage for a systematic micromechanics study, quasi-
static plastic flow in tungsten composites under compression is
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simulated since compressive failure is an important deformation and
failure mode in penetrators. It is found that under compressive loading,
the overall stress-strain behavior of the composite at large strains is
essentially independent of the particle shape, although the local plastic
flow behavior changes dramatically with the inclusion geometry. Two
simple formulae are proposed to describe the overall flow behavior as
determined by the tungsten volume fraction, and the flow behavior of
both phases. To predict the tensile behavior of tungsten composites
sustaining debonding at W-W grain boundaries, a damage evolution
model is proposed based on the Weibull statistics. It is shown that the
stress-strain behavior of the alloy under quasistatic tensile loading is
controlled by two competing trends - strain hardening and debonding
softening - both evolve with the tungsten volume fraction and the
applied strains. It is recognized that the rate dependent plastic flow and
thermal softening of the material are essential in determining the
performance of a penetrator. The strategy represented in this work is
the study of the very complicated subject via specific cases of
systematically increasing complexity. Each step represents one
important deformation and failure mechanism, and reflects one aspect
of the true nature of the physical process.

To solve the actual initial-boundary value problem associated with
penetration, constitutive expressions and failure criteria concerning the
deformation and failure mechanisms in the material are essential.
These mechanisms are controlled by microstructural features such as
grain size, shape, and orientation, interface and grain boundary
strength, dislocation density, and initial damage distribution. To gain
more understanding of the fundamental relation between material
microstructure and thermomechanical properties, mechanism-based
micromechanics studies involving these phenomena are needed. The
finite element cell models used here can be further developed to study
this range of issues, including interface sliding, rate effects, and
thermal softening. Experimental investigations and numerical
simulations examining these issues in dual-phase materials are in
progress.
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Abstract

Pressure-shear plate impact is used to study dynamic shear banding in a two-phase

microstructure at nominal shear strain rates up to 7X 105 s-1, under pressures of the order of

10 GPa. The material is a tungsten heavy alloy (WHA) which has a microstructure consisting

of hard tungsten grains embedded in a soft matrix. Experiments and numerical simulations

show that the two-phase alloy is more susceptible to shear banding than either of its constituent

phases when tested separately. While the onset of shear localization depends on the grain

distribution and volume fraction, the shear band width is found to be set by heat conduction

and is insensitive to the grain volume fraction and the grain morphology.

1. Introduction

Dynamic plastic flow localization plays an important role in a wide range of
applications including high speed machining, high rate forming, explosive weld-
ing and armor penetration. For example, the performance of tungsten heavy
alloys (WHA) as materials used for penetrators of heavy armor has been under-
stood to depend strongly on their resistance to the formation of shear bands. Ex-
cessive mushrooming of the projectiles, and the resulting reduction in penetrator
performance have been associated with a relatively weak propensity for forming
shear bands. Understanding the mechanisms through which shear strain local-
izes in these alloys is clearly important for improving the performance through
revisions in materials design and processing.

At the high rates of straining found in these applications, thermal softening
that occurs because of the heating due to plastic dissipation, together with the
lack of time for heat conduction, provides the main driving force for localiza-
tion. Controlled shear band development under well-characterized deformation
conditions has been limited to nominal shear strain rates of the order of 103

s-1. These experiments involve small or no hydrostatic pressures. Much higher
strain rates and higher pressures are present in applications in which shear band
formation is believed to play a significant role. Higher strain rates delay the
localization of shear strain through inertia effects and through enhanced ma-
terial rate sensitivity. High hydrostatic pressures can suppress void nucleation
and growth, thereby delaying the formation of shear band and prolonging the
localized deformation after the bands form. The need to correctly understand
and model shear banding at ultra-high strain rates calls for experimental studies
that provide such conditions.
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Pressure-shear plate impact of a thin foil specimen described by Clifton and
Klopp (1985)1 is an attractive means for conducting such studies. High rates
and pressures are generated by sandwiching the specimen between two hard
tungsten carbide plates. The specimen is subjected to simple shear at nominal
shear strain rates between 105 and 106 s-1 , under pressures of the order of 10
GPa.

This study concerns the formation of shear bands in the two-phase mi-
crostructure of tungsten heavy alloys. These alloys are are characterized by the
high density, high strength and toughness that they possess resulting from the
composite microstructure of hard tungsten grains embedded in a ductile matrix
such as the nickel-iron-tungsten (Ni-Fe-W) matrix used for the alloy studied in
the current investigation.

There is an extensive literature on the one-dimensional problem of ther-
mal softening induced localization in simple shear, e.g. Recht (1964)2, Clifton
(1980)', Wright and Walter (1987)', Bai (1982)', Merzer (1982)6, Molinari and
Clifton (1987)', Batra and Kim (1992)8 and Shawki and Clifton (1989)9. Evi-
dently, such formulations neglect the complex microstructural influence that in
certain instances dominates the evolution of localized deformation. The compos-
ite microstructure of WHA calls for analyses that account for its microstructural
heterogeneities. In the present paper, finite element calculations are carried out
to model the pressure-shear impact experiments. The tungsten heavy alloy is
modelled as a composite consisting of two phases, i.e. the hard tungsten grains
and the soft matrix. The numerical calculation is carried out using a digitized
microstructure of the actual alloy. In addition, calculations are carried out to
simulate pressure-shear impact experiments on pure tungsten and a nickel-iron-
tungsten alloy which are the constituents of the WHA composite. The coupled
thermo-mechanical problem of dynamic finite deformation is formulated with full
account of finite deformations, inertia, strain hardening, strain rate sensitivity,
thermal softening and heat conduction.

2. Materials

Figure 1 shows the microstructure of a tungsten heavy alloy containing
93wt% - W, 4.9wt% - Ni and 2.lwt% - Fe, before test. This is a typical
structure for such an alloy, consisting of tungsten grains embedded in a matrix
phase of nickel, iron and tungsten. The grains are nearly pure tungsten with a
body-centered-cubic (BCC) lattice structure. The matrix is an alloy of nickel,
iron and tungsten and has a face-centered-cubic (FCC) lattice structure.

In order to understand the effects of the two-phase microstructure or ma-
terial inhomogeneity on the alloy's behavior, this investigation includes the de-
termination of the response of the two constituent phases as well as that of the
composite. To this end, pure tungsten and an alloy custom-made to match the
the reported compositions of the matrix phase are studied along with the tung-
sten alloy. The matrix alloy contains 25wt% - W, 50wt% - Ni and 25wt% - Fe.
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More details including the microstructures of the tungsten and the matrix alloy
can be found in Zhou (1993)10. All three materials are cross-rolled along two
directions in the rolling plane after sintering. The thickness reduction is 8% in
each direction.

3. Experiments

The configuration of the pressure-shear plate impact experiment for high
strain rate deformation of a thin specimen is shown in Fig. 2, as described by
Clifton and Klopp, (1985)1. The experiment involves the shearing of a thin foil
specimen sandwiched between two hard tungsten carbide plates, which remain
elastic during the experiment. The specimen, 50#Im to 200ium in thickness, is
subjected to simple shear for 2ps at nominal shear strain rates between 105 and
106 s-1, under pressures of the order of 10 GPa. Plane wave loading is achieved
by the impact of the thin specimen, bonded to the front of a tungsten carbide
flyer plate, with a stationary anvil plate. Combined pressure and shear loading
is obtained by having the parallel impact faces inclined relative to the direction
of approach. The impact is achieved on a 2.5 inch (63.5mm) light gas gun whose
test chamber is evacuated to vacuum levels of about 100 X 10-6 torr during exper-
iments. Details of this experiment can be found in Clifton and Klopp, (1985)1.
This experiment provides the simplicity of allowing the onset of shear localiza-
tion and the development of a shear band to be interpreted from the stress-time
and stress-strain profiles for plane wave loading under conditions for which the
pressure history is well known. Because of the high normal pressure applied to
the specimen this configuration provides a condition in which the effects of pres-
sure on shear band formation can be investigated. Since the specimen has no
free surfaces, shear band initiation and development are independent of a macro-
scopic geometrical defect parameter, which is important in analyses (Molinari
and Clifton, 1987)7 concerning other experimental configurations, such as the
torsional Kolsky bar.

In order to obtain material response over a wide range of strain rates, tor-
sional Kolsky bar experiments are conducted on the matrix alloy. In addition,
data from similar experiments by Andrews et al (1992)11 on a similar W-Ni-Fe
alloy containing 93% W are used along with pressure-shear impact results to
obtain a complete understanding of the behavior of the WHA and the matrix
alloy. Quasi-static torsional experiments are also conducted These two exper-
iments involve the torsional deformation of a thin-walled tube specimen. The
configuration for these experiments has been described by Duffy and co-workers,
Hartley et al (1985)12, Duffy et al (1971)13 and Costin et al (1979)14.

Tests at elevated temperatures of 200'C and 250'C were conducted to gain
information on the temperature dependence of the stress-strain curves of the
materials.

4. Experimental Results
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Table 1 summarizes the pressure-shear plate impact experiments conducted
on WHA, the matrix alloy and W. Each experiment is also called a "shot".

Table 1 Pressure-Shear Experiment on WHA, W and Matrix Alloy

Shot Material Projectile Skew Normal Shear Shear Specimen Shear

# Material Velocity Angle Pressure Stress Rate Thickness Band
5-1

mm//Is 0, o p, MPa MPa X10 s s Im

9109 WHA 0.181 21.5 8981 1100 0.14 1973 No

9201 WHA 0.188 22.0 9326 1300 1.2 201 No

9203 WHA 0.198 21.5 9831 1160 2.0 175 No

9205 WHA 0.205 21.5 10689* 1350 3.9 78 Yes

9206 WHA 0.202 26.6 9629 1300 5.4 87 Yes

9207 WHA 0.213 22.0 10555 1350 4.0 89 Yes

9209 WHA 0.205 18.0 10430 1290 3.5 61 No

9211 WHA 0.205 21.5 10174 1250 6.5 57 Yes

9303 WHA 0.198 22.9 9748 1320 4.2 79 Yes

9204 W 0.193 22.0 9607 1340 1.2 195 No

9301 W 0.198 22.9 9733 1250 4.2 91 No

9302 W 0.206 22.9 10142 1320 2.5 151 No

9208 Matrix 0.200 18.0 10146 680 3.0 129 No

9212 Matrix 0.199 21.5 9910 780 9.0 55 No

* High pressure window of 1440 ns followed by low pressure window of 520 ns;

Figure 3 shows the stress-strain curves for the WHA at different strain
rates obtained by pressure-shear impact, torsional Kolsky bar and quasi-static
torsion. The results for the Kolsky bar and quasi-static torsion experiments were
obtained by Andrews et al (1992)11. The alloy shows strain hardening at
10-4 S-1. On the other hand, the curves at dynamic strain rates show apparent
softening of the material. This softening is attributed to the thermal softening
of the material resulting from the heat generated by the plastic deformation.
Two Kolsky bar experiments are shown. The defect parameter c, defined as
the maximum wall thickness variation divided by the average wall thickness,
apparently has a strong influence on the critical strain for shear localization.
Figure 4 shows the deformed microstructure of the specimen corresponding to
the pressure-shear curve in Fig. 3. The initial specimen thickness h = 201ym,
the impact velocity Vo = 188 m/s and the impact angle 0 = 22'. The grains
show elliptically elongated shapes, demonstrating the shear deformation. No
shear band is observed in this particular experiment (Shot 9201) even though
the accumulated shear strain is comparable to what is seen in the tosional Kosky
bar curves.
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As the amount of shear strain is increased by reducing the specimen thick-
ness, increasing the impact velocity and increasing the impact angle, shear bands
form in the specimen. Figure 5 shows the stress-strain curves from three shots
involving specimens 57 - 871tm in thickness and impact angles of 18 - 26.60.

Shear bands are observed in the two higher angle shots (Shots 9206 and 9211).
Critical nominal shear strains at the onset of shear localization are between
1 - 1.5. These values are significantly higher than what is shown in Fig. 3
for the torsional Kolsky bar experiments. The sharp downturn in the curves
signifies the loss of stress-carrying capacity associated with the onset of shear
localization. Since the late stages of the drop are very close to the end of the
two-microsecond window of valid observation at the rear surface of the anvil,
there is less certainty about the exact shape of the stress-strain curves at such
late times.

Figure 6a shows the deformed microstructure after Shot 9205 which involves
shearing under high pressure (10.7 GPa) for approximately 1.44/Ls. After this
period of shearing deformation the pressure on the specimen was reduced to
a level for which no significant deformation occurred subsequently. The micro-
graph shows an emerging band at the center of the specimen. A neck has formed
in the tear-drop shaped grain. The development of the band may involve further
shearing of the tear-drop shaped grains and propagation into the neighboring
materials on both sides of the putative band. Figure 6b shows the morphologies
of a fully developed shear band in the specimen of Shot 9206. The intensely
sheared region involves both the W gains and the matrix. The micrograph in
Fig. 6b shows deep etching of the grains so that the structure of the deformed
matrix and grains is clearly revealed. The grains form tear-drop shapes near the
middle of the band. The shear band in Fig. 6b is 5 - 10,am in width. This is
in sharp contrast to the widths of approximately 100im reported for torsional
Kolsky bar experiments, Andrews et al (1992)". Also, the shear band in Fig.
6b shows more intense shear than observed in the torsional Kolsky bar experi-
ments. Prolonged localized deformations occur in pressure-shear impact because
the high pressure (9.62 GPa for Shot 9206) delays failure due to microvoids and
microcracks. During the torsional Kolsky bar experiments, rupture occurs at
relatively early stages of the localized deformation because of the absence of
pressure.

Figure 7 (Shot 9207) shows a shear band that has led to the failure of the
material through the center of the shear band. Ductile failure of the matrix,
grain-matrix separation and grain fracture are visible. A fractograph of the rup-
tured shear band surface is shown in Fig. 8a for the specimen from Shot 9303,
and Fig. 8b is the corresponding back-scattered electron image showing the two
different phases. The dark areas are the matrix and the white regions are the
grains. The surface morphology indicates intense shearing at the center of the
shear band. Note the fractured grain at A. This suggests that grain fracture
plays a part during failure. Dark strips on the grain surfaces, indicate grain-
matrix contact before separation. In view of the high percentage of the fracture
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surface that carrys the grain-matrix shear marks, grain-matrix separation ap-
pears to be the dominant failure mechanism. Some microcracks are seen on
heavily sheared grains (grains A, B and C) in Fig. 8a. Grains A and C appear
to have been fractured. Grain B probably has not fractured but has developed
internal microcracks. Grains D, E and F have clean fracture surfaces with no
indication of contact with the matrix before breaking. A combination of ductile
rupture of the matrix, grain-matrix separations and grain fracture seems to be
responsible for the failure of WHA inside a shear band.

Experiments were also conducted on pure tungsten and the matrix alloy.
In contrast to the observed shear band formation in the case of WHA, neither
the deformed microstructure of tungsten nor that of the matrix shows localized
deformation, see Zhou (1993)10. The stress-strain curve for pure tungsten is
shown in Fig. 9 along with the WHA curve from Shot 9206. Similar stress
levels are observed for W and WHA. The tungsten curve does not show a sharp
downturn that would indicate the loss of stress-carrying capacity due to localized
deformation. The stress-strain curve for the matrix is also shown in Fig. 9. Note
that there is no sharp downturn in this stress-strain curve signifying the onset
of localized deformation. Furthermore, the curve shows strong strain hardening
by the matrix during the pressure-shear impact experiment.

The above results demonstrate that the composite WHA is more susceptible
to shear banding than either of its constituent phases when tested separately.
This susceptibility suggests the role of material inhomogeneity in the formation
of shear bands. The presence of different phases serves as a perturbation to
the deformation that provides nonuniform fields for the development of shear
bands. Full simulations will be carried out later to explore the role played by
different microstructural aspects of this two-phase material. The calculations
will confirm that the two constituent phases are indeed more resistant to shear
banding than the composite WHA.

Figure 10 is a summary of the response of the matrix alloy obtained from
quasi-static torsion, torsional Kolsky bar and pressure-shear plate impact. Un-
like the WHA, the matrix alloy shows strain hardening under both quasi-static
and dynamic conditions. This behavior indicates that the thermal softening due
to plastic dissipation is relatively small and insufficient to overcome the strain
hardening under these test conditions. This lack of strain softening can be ex-
plained as follows. While the matrix alloy has a specific heat three times that of
the WHA, its flow stress is only about one half that of the WHA. For the same
amount of plastic strain the temperature change would likely be only one third
of that for the heavy alloy, considering a factor of two for the difference in the
densities.

The strain rate sensitivities of the WHA and the matrix alloy are shown in
Fig. 11. The flow stresses plotted correspond to a shear strain of -Y = 0.45 for the
matrix. It is noted that the matrix alloy exhibits a relatively lower strain-rate
dependence of the flow stress. The WHA, on the other hand, shows a strong
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strain-rate sensitivity at high strain rates. The flow stress levels of pure tungsten
are found to be slightly higher those of the WHA.

Figure 12 shows the shear stress-strain curves of the matrix alloy at room
temperature, 2000C and 250'C, obtained from torsional Kolsky bar experi-
ments. Significant thermal softening is seen in this temperature range. The
experiments are limited to temperatures under 250'C to avoid significant ex-
pansions in the parts of the loading bars that experience heating together with
the specimen. The temperature dependence of flow stresses for WHA, W and
the matrix alloy are summarized in Fig. 13. The data for WHA are reported
by Andrews et al (1992)", Bose, Sims and German (1988)'", and O'Donnell
and Woodward (1990)16. The solid lines are model characterizations which will
be discussed in Chapter III. It is assumed that the materials lose all stress-
carrying capacity when the temperature reaches their corresponding melting
points. Tungsten shows a much lower rate of thermal softening than the matrix
partly because of its high melting temperature (approximately 3600 K). The
thermal softening behavior of WHA depends on the softening rates of both the
tungsten grains and the matrix. There is a lack of data on the thermal softening
behavior at high temperatures for all the materials studied.

5. Analytical Formulation

A convected coordinate, Lagrangian formulation of the field equations is
used as, for example, in LeMonds and Needleman (1986), Needleman (1989),
and Needleman and Tvergaard (1991). The coupled thermo-mechanical prob-
lem of dynamic finite deformation is formulated with full account of finite defor-
mations, inertia, strain hardening, strain rate sensitivity, thermal softening and
heat conduction. The equations that govern the coupled mechanical and the
thermal processes are, respectively, the principle of virtual work and balance of
energy, i.e.

-r: bEdV f f.6udS - p- .• udV, (1)

/pcpiT6TdV = JV x-r: D~bTdV + Js k(F'1 . F-T OT) . bd
Ox(2)I-- I k(F-1 .F-T OT) .9T dv

In the above equations, r is the Kirchhoff stress (r = det JFl a, with 0 the
Cauchy stress tensor and F the deformation gradient), E is Lagrangian strain, f
is the traction on a surface in the reference configuration, u is the displacement,
p is the density in the reference configuration, t represents time, Cp is the specific
heat, T is temperature, . is the portion of plastic work converted to heat, DP
is the plastic part of the rate of deformation, k is the heat conductivity, n is
the normal to a surface in the reference configuration, (') denotes a( )/Ot, ( )-1
denotes inverse, and )-T denotes inverse transpose.
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The incremental stress-strain relation is written in terms of the Jaumann
rate of Kirchhoff stress i' and the rate of deformation D as

iý= L : [D - DP - a&I 1] (3)

where L is the elastic modulus tensor, I is the second order identity tensor,
and a is the coefficient of thermal expansion. For an isotropically hardening,
viscoplastic solid DP is given by

P= 3 /' (4)

with f being the equivalent plastic strain rate and

-)1 2 =_ r 9:9-. (5)
3 2

The viscoplastic response of each of the constituent materials obtained ex-
perimentally for the strain-rate range of 10- 4 s-1 to 7 x 105 s-1 is characterized
by the following equations

_il i2
iI "+ i2'

g(,TJ(6)

g(c,T) =ao (1 + el/o)N{ -1 [(TITo)' - 1]},

where • = fo Mdt is the equivalent plastic strain; io is a reference strain rate;
m and a are rate sensitivity parameters, respectively, for strain rates below 103

s-1 and above 5 x 104 S-1, co is a reference stress, co is a reference strain, N

is the strain hardening exponent, To is a reference temperature, and /1 and K
are thermal softening parameters. The function g(ý,T) represents the stress-
strain relation at a quasi-static strain rate of io and at temperature T. At room

temperature To, g(ý, T) = ao(1 + N.

After finite elment discretization, Eqns. (1) and (2) take the forms

02U
M - = R, (7)

and cOT
C- =-KT + H, (8)
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where U is the vector of nodal displacements, T is the vector of nodal tem-
peratures, M, C and K are, respectively, the mass, the heat capacitance and
the heat conductance matrices, and R and H are the mechanical and thermal
force vectors. A lumped mass matrix is used in (7), for reasons of efficiency
and accuracy, Krieg and Key (1973)20. Additionally, a lumped heat capacitance
matrix is used in (8). In order to verify the accuracy of the integration of (8)
with a lumped capacitance matrix, numerical results for a purely thermal prob-
lem involving non-uniform heat sources distributed on a rectangular area were
compared with an analytical solution and good agreement was found.

Interested readers can find full descriptions of the formulation and the nu-
merical implication in Zhou, Needleman and Clifton (1993)21.

6. Numerical Results

Figure 14 shows the digitized microstructure used in the analysis. This
microstructure is obtained from the actual alloy that was used in the impact
experiments. This microstructure allows realistic simulations of the actual de-
formation.

In the numerical analyses, 0 = 26.6', V0 = 202 m/s and the specimen
thickness h = 87ym, as in the experiment that led to the shear band in Fig. 6b.
A square planar region, 87jim x 87ym, is used in the calculations. The mesh
used in the simulations is an 80x80 uniform distribution of "crossed triangle"

square elements.

The results at 2.0is after impact are shown in Fig. 15. The distributions of
equivalent plastic strain (Fig. 15a), equivalent plastic strain rate (Fig. 15b) and
temperature (Fig. 15c) indicate that a shear band has formed at the center of the
specimen. The width of which is approximately 10pm, which is consistent with
the width of the band in the micrograph in Fig. 6b. Further calculations with
microstructures with different grain shapes, grain arrangement, grain size, grain
volume fraction and with adiabatic conditions assumed have shown that the
length scale associated with heat conduction determines the shear band width
in the circumstances considered, Zhou, Needleman and Clifton (1993)21. The
largest equivalent plastic strain (Fig. 15a) in the shear band is 8 to 9 and the
peak temperature (Fig. 15c) inside the band is approximately 1300 K, which is
approximately 75% of the melting temperature of the matrix (Z 1750 K). In Fig.
15d, g(E, T) is a hardness function representing the effects of strain hardening
and thermal softening (Eqn. 6). Clearly, the two phases have different hardness
levels. Since more heat is generated inside the band, thermal softening inside
the shear bands overcomes the strain hardening and the hardness decreases at
higher rates than outside the band, as the temperature continues to increase.
Consequently, g(i, T) is significantly lower inside the shear band than outside
the band. Both the matrix and the grains are involved in the shear band. The
tails of the tear-drop shapes are similar to those in the micrograph of Fig. 6b.
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In addition, the overall shapes of the deformed grains resemble closely those
observed in the micrograph of Fig. 6b.

The effects of heat conduction are assessed by comparing the calculated re-
sults with heat conduction with those for the corresponding adiabatic case. Fig-
ure 16 shows distributions of equivalent plastic strain, equivalent plastic strain
rate, temperature and equivalent stress at 0.6pts after impact for an adiabatic
calculation. All other parameters correspond to the case in Fig. 15. Shear local-
ization occurs much more rapidly when adiabatic conditions are assumed. Fully
developed shear bands are found both at the center of the specimen and near
the impact face, Figs. 16(a-d). The catastrophic process of coupled increases in
temperature and strain continues until the temperature inside the band reaches
the melting point and the matrix loses all stress-carrying capacity. In the adi-
abatic simulation this occurs shortly after 0.6ps. Heat conduction, of course,
stabilizes the deformation and delays the formation of shear bands. Addition-
ally, there is a significant effect on the shear band width. In the adiabatic case
in Fig. 16, the shear band width is 1 - 2pm, which corresponds to a width of
one to two quadrilateral elements. In contrast, the shear band width of ; 10/lm
in the analyses accounting for heat conduction is much greater than the element
size.

7. Discussion

To study the effect of material inhomogeneities, simulations were also car-
ried out for impact experiments of pure tungsten and an alloy which has a
similar composition as that of the matrix phase in the WHA composite. Figure
17 shows the distribution of the equivalent plastic strain rate across the speci-
men thickness, at 2ps after impact, for pure tungsten and for the matrix. For
comparison purposes, the corresponding strain rate distribution is also shown
for the WHA simulation based on the digitized microstructure of Fig. 14. The
curves for the digitized WHA microstructure represent averages over the ý2 di-
rection. Neither the pure tungsten nor the matrix shows the formation of a shear
band, but the WHA composite does. This behavior can be explained as follows.
Pure tungsten has a much higher flow stress than the matrix. The high flow
stress in tungsten causes high rates of heat generation, but, because of the high
melting temperature of tungsten, thermal softening is not sufficiently strong to
cause localization. Thus, in the composite, the inhomogeneities arising from the
presence of the tungsten grains provide perturbations for initiating localization
in the matrix at much earlier times. However, in order for a shear band to form
the harder tungsten grains must undergo large deformations. The progressive
thermo-mechanical coupling between the phases causes both of them to be in-
volved in the formation of the shear band. Depending on grain morphology and
volume fraction the band can occur either earlier or later than when localization
would occur in the matrix alone.

A shear band width of about 10 jim has been obtained when heat con-
duction is considered (Fig. 15). This width agrees well with what is observed
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experimentally, Fig. 6b. Further computations have shown that the shear band
width is insensitive to changes in grain arrangement, grain shape, grain size
and grain volume fraction, see Zhou, Needleman and Clifton (1993)18. On the
other hand, a strong dependence on the thermal conductivity has been found.
The dependence of the width on heat conductivity and strain rate was ana-
lyzed by Merzer (1982)6. The characteristic length set by heat conduction is
L* = 2v-Di57F where t* is a time scale of the process and D2 = k/pcp is the
thermal diffusivity. Two time scales need to be considered:, (1) the local char-
acteristic time associated with the formation of a shear band; this characteristic
time determines the width of the band; and (2) the duration of the experiment
over which the conduction of heat into the flyer and anvil takes place; this char-
acteristic time strongly influences the location of the shear band relative to the
interfaces. For the present study D2 = 4.91 x 10-' m 2 /s, t = 1/4 = 2.89 x 10-7

s for the development of a shear band, with 4 the shear strain rate inside it.
Therefore, L = 2v/-D-t • 7.5/,m. Thus, the width of the shear band correlates
well with the characteristic length set by heat conduction. The duration of the
experiment is F = 2.0 x 10-6 s. The length scale for heat conduction through
the boundaries is L = 2V-D--•? ; 19.8ium. This length is consistent with Fig.
15c, where heat conduction significantly influences the temperature distribu-
tion over approximately 1/5-1/4 of the specimen thickness near each of the two
boundaries. This influence of heat conduction is clearly demonstrated by the
difference between the results of Fig. 15 (with heat conduction) and Fig. 16
(without heat conduction). Heat conduction into the anvil effectively prevented
one of shear bands in Fig. 16 (the one that is approximately 10/Lm away from
the impact face) from forming in Fig. 15. This indicates that heat conduction
directly influences the formation of shear bands by preventing the localization
from occurring near the impact face where the shearing rates are high initially.

Indeed, heat conduction plays an important role in dynamic shear band
development in the pressure-shear plate impact experiment. It contributes to
sustaining the stress carrying capacity and to stabilizing the deformation. Fur-
thermore, it sets the length scale for the width of the shear band (note that when
heat conduction is accounted for the shear band width is clearly not set by the
mesh) and influences the location of the region where localized deformation takes
place.

The analyses here have been carried out in a two-dimensional plane-strain
context. The assumption of plane strain deformations is appropriate for the
pressure-shear plate impact experiments over the time interval considered. The
main limitation of the two-dimensional framework is associated with modelling
the material microstructure in terms of cylindrical grains. On the other hand,
a full three-dimensional analysis would require substantially greater computa-
tional resources. Also, the tungsten grains have been modelled as elastically
isotropic and in the plastic range, as isotropically hardening Mises solids. Any
effects of elastic anisotropy, or of plastic flow occurring on discrete slip systems
has been neglected. Nevertheless, key features of the observed phenomenology
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of shear localization in tungsten heavy alloys under pressure-shear plate impact
are reproduced by the computations.
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Fig. 7 SHEAR BAND MORPHOLOGY AFTER SHOT 9207

(a)

Fig. 8 FRACTOGRAPHS OF THE SHEAR BAND SURFACE
AFTER SHOT 9303 (a) MORPHOLOGY OF SHEAR BAND
SURFACE; (b) BACK-SCATTERED ELECTRON IMAGE OF
THE SAME AREA

131



1600

W(CR) --4.2Xl0's s'
(Shot 9301)

. 1200 •

C6 , WHA(CR), -5.4X10s "

0) (ShatI006)
uj

800. 4"
cc MATRIX(CR),=-3.0Xl0s 8-1"(Shot 9208)

U) 400.

0.00
0.0 0.5 1.0 1.5 2.0

NOMINAL SHEAR STRAIN

Fig. 9 DYNAMIC SHEAR STRESS-STRAIN CURVES OF
WHA, W AND MATRIX ALLOY OBTAINED BY PRESSURE-
SHEAR PLATE IMPACT

1600 .'".."' .. ""' "".. "'.. "... "'.. "'.. ".. "'..".."... " .'.. ."

1400
4a

RE 1200

1000

I- 900 (Preswure-Shear)

60 f1.2-1.4x10' s"<€ s00 .( Kolsky Bar)
'Li

) 400 (Quasi-sttic Torsion)

200

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

NOMINAL SHEAR STRAIN

Fig. 10 SHEAR STRESS-STRAIN CURVES OF MATRIX ALLOY
1600

A QUASI-STATIC TORSION

. TORSIONAL KOLSKY BAR W

R PRESSURE-SHEAR IMPACT
(•" HA

Lu

[£800
I--

400 -

10. 1 100 10. 10 0' 10s I1 ' 1 o 10 T 10o

SHEAR STRAIN RATE, [LOG, 8"']

Fig. 11 STRAIN RATE SENSITIVITIES OF WHA, W AND
MATRIX ALLOY

132



1600 .

a-
1200

V3
Iul

I- S00
/) ?-=1.2-1.4x10

2 
s"

LLJ '- Z 200*C, •=_1.5xI0= s-

.. l-r/J 400250°c,=_1.3x10
3 

s-t

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 12 1.3 1.4 1.5

NOMINAL SHEAR STRAIN

Fig. 12 STRESS-STRAIN CURVES OF MATRIX ALLOY AT
DIFFERENT TEMPERATURES

1600 I

U
a. 1200 - A

$00uJ

X 400

02

0 500 1000 1500 2000 2500 3000

TEMPERATURE, [K]

Fig. 13 TEMPERATURE DEPENDENCE OF FLOW STRESS
FOR WHA, W AND MATRIX ALLOY

90 MATRIX

l1W
60f1

3 1

30

0, 30 60 90
Rm

Fig. 14 DIGITIZED MICROSTRUCTURE USED IN TIlE

ANALYSIS

133



IRISMTI W \GRAINS ol ATRIX

.X1~~2~ AFE IM ACT .0 -L -..

126 250

2p AFTER IMPACT 24. AFTER IMPACT0.

RATE (c) ~~~~~TEMPERATUREAN(dHRDESq(,T

1342



T [)io06 e1

WGRAINS MATRIX WGRAJRS MATRIX

. .. .. 1.0 X.

0. J L .I 4

00.0

OR6p AFTER IMPACT 0.6,s AFT ER I M PACT
(a) (b)

TEMPERATURE jM a
(K) ,[M a

W GR AINS MATRIX W RNSMATRIX

00000

fl 211
0l 75 16 000

000110X

0.6o~AFTER IMPACT 0.61,AFTER IMPACT
(c) (d)

Fig. 16 CALCULATED DISTRIBUTIONS AT 0.6its AFTER IM-
PACT OF: (a) EQUIVALENT PLASTIC STRAIN, (b) STRAIN
RATE, (c) TEMPERATURE AND (d) EQUIVALENT STRESS a*
WITH ADIABATIC CONDITIONS ASSUMED

WHA (igiizd)IMPACT FACE:
''4 KH,(igfzd
c :3

Z-

Matrix

0 20 40 60 80

Fig. 17 CALCULATED DISTRIBUTIONS OF IACROSS SPEC-
IMEN THICKNESS at 2ps AFTER IMPACT FOR WHA, W AND
MATRIX ALLOY

135



Deformation and Failure of
Tantalum and Tantalum-Tungsten

Alloys Under Dynamic Tensile/
Shear Loading

D.H. Lassila, M.M. Leblanc and K.A. Winer
Lawrence Livermore Laboratory

"PAPER NOT AVAILABLE"

137



Viscoelastic Mode I Fracture
Behavior in Nitrile Rubber Sheets

C.J. Quigley, J.L. Mead and A.R. Johnson
Materials Directorate, ARL

"PAPER NOT AVAILABLE"

139



SESSION IIB:
COMPOSITES

Chairman: Dr. B. Burns
Weapons Directorate
Army Research Laboratory

S....::::::::::::::::::..........::::::::::::::::::

A .:iiiii! li•[[[i

141



Combined Tension and Bending Testing of
Tapered Composite Laminates

Dr. T. Kevin O'Brien*
Ms. Gretchen B. Murri

Army Research Laboratory
Vehicle Structures Directorate

NASA Langley Research Center
Hampton, Virginia 23681

Mr. Rick Hagemeier
Aerospace Engineering Department

Wichita State University
Wichita, Kansas 67208

Mr. Charles Rogers
Bell Helicopter Textron

Fort Worth, Texas 76101

Hingeless and bearingless composite rotor hubs are currently
being designed and manufactured to reduce weight, drag, and parts
count as well as to improve the aerodynamic performance of military
and civilian helicopters. To achieve the required performance in the
flexure region of the hub, the stiffness of the composite flexbeam is
varied by dropping (terminating) internal plies. These dropped plies
create discontinuities in the beam that initiate delaminations under
the combined centrifugal force (CF) tension and cyclic bending loads
experienced by the hub during service. Recently, studies have been
conducted to ascertain the delamination durability of tapered
laminates under cyclic tension loads [1,2]. The purpose of this study
was to develop a tapered beam coupon analysis for combined
tension and bending loading that could be used to identify
configurations with the surface strain distribution similar to a full scale
hub. Linear and non-linear tapered laminate configurations were
investigated for two different glass/epoxy materials.

Analysis of Linear Taper Flexbeam Coupon

A beam element used at Bell Helicopter [3] was incorporated in
the computational mechanics testbed (COMET) finite element code [4]
at the Langley Research Center (LaRC). This beam element is a
modified Euler-Bernolli beam that includes additional terms in the
element stiffness matrix to incorporate the non-linear effects of a
constant membrane force on the flexural stiffness. Hence, nodal
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forces are given by {F} = [k] {u} , where [k] = [k]A + [k]B , and where

[k]A = 2E•- [f(1,L,L 2 )]
L (1)

[k]B = 6LL [f(1,LL 2 )] (2)

where El is the flexural rigidity of the beam of length, L, P is the
membrane load, and [f(1,L,L 2 )] represents a matrix whose
terms are either constants or linear or quadratic functions
of L only [3]. This element captures the influence of a constant
membrane force on transverse bending deflections, without requiring
an iterative non-linear solution scheme.

The constant membrane force is consistent with the load
control arrangement on a combined axial tension and bending (ATB)
hydraulic load frame that was recently designed and built at LaRC to
test composite laminates [5] .In the ATB machine, the axial load cell is
incorporated in the top grip that rotates with the thin portion of the
tapered laminate as the transverse load is applied. Hence, a constant
membrane load may be maintained while the flexbeam coupon is
subjected to cyclic bending.

By modeling tapered flexbeam laminates with the appropriate
ATB boundary conditions and loadings, the ability of candidate
flexbeam coupon configurations to simulate the response of full scale
rotor hub components may be assessed. Initially, variations on the
linear tapered laminate configurations previously tested under cyclic
tension [1,2] were analyzed. Figure 1 shows one half of the thickness
of the linear tapered specimens, consisting of internal core plies that
run the length of the beam, the dropped plies, and the external belt
plies that transform through the taper angle, a, between the thick and
thin regions.

Section properties were calculated at locations A, B', C, C', D,
D', E and F, using a laminated plate theory code for tapered laminates
that specified not only the in-plane angle for each ply, but the out-of-
plane taper angle, a, as well [1]. The code uses the appropriate
lamina properties (Table 1) for each section to calculate the [A], [B],
and [D] (axial, coupling, and bending) stiffness matrix terms as well as
the engineering moduli and Poisson's Ratio (Ex,Ey,Gxy,Vxy) for that
location. All of the primed sections (B', C', D') had two ply thicknesses
of isotropic resin modeled to replace the dropped plies in the
unprimed sections (A,C,D) at the same location. The belt ply
properties in sections B', C, C', D, D', and E were transformed
through the taper angle of 5.71 degrees. The equivalent bending
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stiffness, El, at each location was calculated as b/d 1 1, where b is the
specimen width and dl1 is the first term of the inverse
bending stiffness matrix. Two section properties were calculated
at the ply drop associated with the transition from the thick to tapered
region (sections A & B'), at each of the tapered region ply drops
(sections C & C' and D & D'), and at the juncture point between the
thin and tapered region (sections E & F). The element bending
stiffness, El, for each plydrop region in the tapered section was
calculated from section properties using a weighted average:

El (Elheft - (EI)fightEEl=e
In ((EI)leftý(EI fghtý (3)

Three configurations with the same width (1.0 in.), total length
(3.5 in.), and the same taper length (0.5 in.) but different thin and thick
region lengths were analyzed (fig.2). These consisted of (a) equal thin
and thick region lengths of 1.5 inches, corresponding to the
configuration used previously for tension fatigue studies [1,2], (b) a
short (0.5 inch) thick region and a long (2.5 inch) thin region, and (c) a
zero-length thick region. Configurations (b) and (c) are more typical of
rotor hub flexbeams than configuration (a).

Figure 3 shows a sketch of a linear tapered laminate coupon
plus the ATB loading apparatus and the corresponding finite element
model. The bottom grip is modeled as a rigidly clamped boundary that
reacts both the axial load and the bending moment. The thick,
tapered, and thin regions of the laminate are modeled using the beam
elements described earlier. The beam elements in the thin and thick
region were 0.5 inches long, whereas the beam elements in the
tapered region were one third of this length. This corresponded to one
beam element for each of the three unique ply drops in the tapered
region. Also included in the model are the top grip, load cell, and pin
assembly where the loads are applied in the ATB machine. The top
grip, load cell, and pin assembly are modeled as isotropic beams
using an axial modulus for stainless steel and a moment of inertia
corresponding to the dimensions of each cross section. This
combination of top grip, load cell, and pin assembly is two orders of
magnitude more rigid than the tapered composite laminate, and
hence, has no significant contribution to the flapping angle, 0.

Figure 4 shows the moment distributions for a unidirectional
S2/SP250 glass/epoxy laminate corresponding to the three
configurations in fig. 2 with an applied axial tension load, P, of 8000
lbs and a transverse load, V, of 1000 lbs. For a one inch wide coupon,
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these loads correspond to typical CF tension and cyclic bending
loads experienced in bearingless rotor hubs. The moments in the
tapered region (indicated by solid symbols) are greater the closer the
taper is to the bottom grip.

Figure 5 shows the distribution of tensile stresses on the
surface of the tapered laminate associated with the axial, bending,
and combined loads for configuration (b). Surface stresses due to
bending were calculated in the outermost zero degree ply for each
unique section of a unidirectional S2/SP250 glass/epoxy tapered
laminate using the expression derived by Whitney [6]

ARx M 1(QI IS1b + QI•2s 12b + Q•6S 16bfI (4
~ (4)

dijt3

where Sijb- 12

For the outermost zero degree plies of the linear tapered laminates,
this reduces to

ax= 19h(Q 1 ldll + Q 12dl 2 )M (5)

ax= 13h (Qlldll + Q1 2 dl 2 )M (6)

ax = I- (Q1 101d 1(x + Q12oxdl2ox)M
2(7

for the thick, thin, and tapered regions, respectively, where h is the
average ply thickness and t is the section thickness. The subscript (X
indicates that the unidirectional properties have been translated
through the 5.71 degree taper angle. In the thick and thin regions,
laminated plate theory equations 5&6 yield the same result as
isotropic beam theory for unidirectional laminates. However, in the
tapered region eq(7) deviates from the beam theory for unidirectional
laminates due to the taper angle translation in the belt plies.

As shown in fig.5 for a unidirectional S2/SP250 glass/epoxy
tapered laminate, the surface stress due to the membrane load is
greatest in the thin region, decreases through the tapered region, and
is lowest in the thick region. The surface stress due to bending and
the total surface stress within the taper region are greatest at the
juncture point.

Figures 6 shows the distribution of tensile strain on the surface
of a unidirectional S2/CE9000 glass/epoxy tapered laminate
associated with the combined tension and bending loads
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for configuration (b). The maximum surface strains in the tapered
regions occurred at the ply drop location nearest the juncture point
followed by the juncture point.

Linear Taper Configuration Experiments

Experiments were conducted in the ATB machine on
S2/CE9000 unidirectional glass/epoxy tapered laminates using
configuration (b). The axial load was applied first, followed by the
transverse load. The transverse displacement at the top grip point, v,
was measured using a DCDT mounted to the load frame. The rotation
at the top grip point, 0, was measured using a digital protractor
mounted on the top grip. Surface strains were measured using strain
gages mounted in the thick, tapered, and thin regions.

Figure 6 compares the measured maximum surface strains to
the analytical predictions for the S2/CE9000 unidirectional
glass/epoxy tapered laminates. Predicted strains were close to, but
slightly exceeded, the measured values.

Analysis of Non-linear Tapered Configuration

In order to achieve a more uniform surface strain distribution on
the flexbeam, internal plies may be dropped in a staggered pattern to
achieve a non-linear taper. A finite element model was conducted for
a non-linear tapered flexbeam configuration (fig.7) loaded in the ATB
test machine. The model had a 6.5-inch gage length between the top
and bottom grip, with a 0.5-inch thick region emanating from the
bottom grip before the taper began, and a 5 inch non-linear tapered
region. The thick region had a [45/-45/05/(45/-45)6/45/04/(-45/45)6/-
4 5/ 4 5/-4 5 /02/( 4 5 /-4 5 )6/4 5/04/(- 4 5/ 45 )6/-4 5/03/45]s layup. The zero-
degree unidirectional plies were continuous throughout the beam
length. Most of the 45 and -45 degree plies were dropped in a
staggered pattern along the tapered region length until a uniform thin
region was achieved with a [4 5 /-4 5/09/ 4 5 /-4 5 /09/ 4 5 ]s layup. The
tapered region was modeled as four equivalent uniform thickness
beams with element properties estimated from eq(3). The equivalent
uniform thickness beams had lengths corresponding to the distance
between points where the zero-degree plies transition from straight
plies to curved plies following the surface contour (see fig.7).

The moment distribution was generated using the beam
element described previously and S2/SP250 glass/epoxy lamina
properties from Table 1. The moment distribution is shown in fig. 8 for
the non-linear tapered beam with an applied axial tension load, P, of
8000 lbs and a transverse load, V, of 1000 lbs. The stresses in the
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surface 45-degree plies due to the axial, bending, and combined
loads were calculated using eq(4). As shown in fig.9, the combined
axial and bending stress in the surface 45 degree plies is greatest
shortly after the taper begins just inboard of the thin region. The
surface strains in the 45-degree plies are shown in fig.10. The
maximum strain is on the order of 1.0%, which is well below the 2.5 to
3.0 % failure strain of the S2 glass fiber. Hence, these non-linear
tapered laminates are good candidate test coupons for examining the
delamination durability of the composite flexbeam in the full scale
rotor hub.

Summary

A simple beam element used at Bell Helicopter was
incorporated in the Computational Mechanics Testbed (COMET) finite
element code at the Langley Research Center (LaRC) to analyze the
response of tapered laminates typical of flexbeams in composite rotor
hubs. This beam element incorporated the influence of membrane
loads on the flexural response of the tapered laminate configurations
modeled and tested in a combined axial tension and bending (ATB)
hydraulic load frame designed and built at LaRC. The moments
generated from the finite element model were used in a tapered
laminated plate theory analysis to estimate axial stresses on the
surface of the tapered laminates due to combined bending and
tension loads. Surfaces strains were calculated and compared to
surface strains measured using strain gages mounted along the
laminate length. The strain distributions correlated reasonably well
with the analysis. The analysis was then used to examine the surface
strain distribution in a non-linear tapered laminate. Results indicate
that simple finite element beam models may be used to identify
tapered laminate configurations best suited for simulating the
response of a composite flexbeam in a full scale rotor hub and
studying their delamination durability.
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Table 1 - Glass/Epoxy Lamina Properties

$2/SP250 $2/CE9000 Neat Resin
Ell x 106 Psi 6.60 7.12 0.595
E22 x 106 Psi 2.10 2.46 0.595
G 12 x 106 Psi 0.88 1.10 0.224

V12 0.275 0.303 0.330
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Abstract

Kevlar composites are used by the United States Army for ballistic
protection against small arms fire and fragmentation munitions.
Typical applications include infantrymen's Kevlar helmets, and back
face spall liner plates for combat vehicle armor. While such
composites are widely used, they had not been evaluated for extremes
of Arctic environments. Therefore this paper presents results of an
investigation of the effects of Arctic environment on the performance of
Kevlar composites. Standard issue Kevlar/epoxy helmets and 12 inch
square plates of Kevlar/epoxy spall liners were subjected to 100
thermal cycles between +60 and -60 degrees centigrade to simulate
exposures to several months of an Arctic environment. Tension tests
were performed before and after such exposure. Ballistic tests, were
also conducted on the same materials. Severe thermal cycling, over
extended periods of time, can induce microcracking. Such
microcracking can effect the performance of composite materials. As
expected, reduction of strength, changes in stress-strain curve and
different ballistic failure modes were observed.
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Introduction

Kevlar composites have been qualified for a wide range of
aerospace applications, and effects of severe environments have been
routinely evaluated. But many United States (US) Army applications
use relatively thick sections of composites, particularly for armor.
Accordingly it was prudent to investigate the influence of Arctic
weather on representative ballistic protection materials. Two type of
composite applications were chosen for evaluation, namely helmets
and spall liners as used for infantry fighting vehicles.

A dozen helmets were provided by the US Army, Natick
Laboratory. These had been fabricated according to MIL-H-444099A,
dated 22 December 1986, Military Specification, Helmet, Ground
Troops and Parachutists. The standard ballistic protection helmet
consists of a laminated, coated aramid cloth shell with a replaceable
suspension assembly, headband and chin strap. Helmet shells are
formed in complex molds, under high pressure, using either "pinwheel"
preforms or a combination of pinwheel preforms and specified number
of rectangular fabric panels. The pinwheels are continuous, integral
pieces of fabric, which may be cut up to within 2 1/2 inches of the
center, leaving an uncut area measuring a minimum of 5 inches across
in any direction. There may be no more than 8 legs in any pinwheel
and no less than 19 layers of fabric. The purpose of the preform is to
facilitate formation of the complex, doubly curved helmet. Ballistic
limits, V50, for these helmets must be no less than 2000 feet per
second (fps), when tested according to MIL-STD-662, which
necessitates firing a .22 caliber fragment simulating projectile
weighting 17 ± .25 grains.

Two types of representative spall plates were provided by US
Army Research Laboratory, Materials Directorate, Watertown,
Massachusetts. Plates were 12 inch square panels, at 2.0 and 2.9
pounds per square foot (psf) respectively. The heavier, thicker panels
were used for mechanical properties testing, whereas both
thicknesses were used in ballistic testing. The Watertown laboratory
also supplied us with prototype Spectra helmets of the same
configuration as the issue models.
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Ballistic Performance

Researchers at US Army, Natick Laboratory brought to our
attention reports of the ballistic performance of Kevlar helmets. As just
mentioned, the Kevlar helmet in the US Army's inventory is designed
to stop 17 grain fragments at speeds up to 2000 fps. However in
Operation Just Cause more than a dozen soldiers reported that their
helmet was able to defeat small arms fire at point blank range. One
hypothesis was that oblique impacts enhanced performance of the
Kevlar composite and we were asked to investigate.

Accordingly, Kevlar polyester panels of 2 and 2.9 pounds per
square foot (psf) areal density were tested at 0.45 and 90 degree
obliquities at ranges of 17 and 25 yards. Threats were standard
military ball, full metal jacket (FMJ) 5.56, 7.62 and 9mm rounds. The
desired angles of obliquity were achieved by mounting the plates in
hinged frames and setting the desired angle using a plumb bob, liquid
bubble level, and protractor. Weapons were fired from a sturdy,
aligned bench rest. In addition to experiments on square plates, three
types of helmets were also tested at point blank range, namely Kevlar
and Spectra epoxy helmets and World War II steel helmets with nylon
reinforced composite liners. The various helmets were held onto thin
plywood panels via rubber bungee cords, and mounted in the target
frames with the plywood panels perpendicular to the bullet trajectory.
In this way by aiming at the crown of the helmets, or at different
distances from the helmet center,-varying degrees of projectile impact
angle could be achieved.

Throughout military history, armies have sought better helmets,
and the helmet is an important piece of equipment for the US Army.
On a routine basis, the head is the only protected part of a soldier's
anatomy. Although the Army has ballistic protective vests, these are
not worn universally in battle. The Kevlar composite helmet replaced
the W.W.II "steel pot" in 1978, although it is not widely issued. The M1
steel helmet was adopted by the US Army in June 1941. Originally it
had a cotton reinforced plastic liner. In March of 1961 the cotton liner
was replaced by nylon to raise the ballistic limit by 10 to 15%. In the
original ballistic tests, Kevlar composite was found to be at least 60%
better than the steel pot, for various size fragments. Of course it is
considerably more expensive. Titanium helmets had also been
studied, but rejected due primarily to cost.
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The first ballistic tests were conducted using the 2.0 psf composite
plates. Initial threats used were 5.56, 7.62 and 9mm rounds, fired at
zero obliquity. The plates were subsequently set at angles of 45 and
60 degrees, and the entire series repeated with 2.9 psf panels. The
5.56 and 7.62 threats defeated all targets fired upon, the change in
impact angles did not help. With metal armor the increase in angle of
obliquity is treated as if the projectile has to penetrate a thicker target,
increasing target thickness using cosine of the impact angle. Of
course this is an extremely simplified viewpoint. With angled impact,
wave propagation is no longer symmetric, and complex asymmetric
wave interaction occurs. The local wave phenomena is far more
complex in anisotropic, laminated composites. As the angle of impact
increased from 0 to 45 to 60 degrees, the volume of material damaged
increased and so did the exit damage. Much more frayed and cut
Kevlar yarn occurred in the exit zone for 60 degree impacts.

In the flat panel tests the 9mm, 124 grain full metal jacket
projectile was defeated by both 2.0 and 2.9 psf plates at zero degree
obliquity. These 9mm rounds did not penetrate but were trapped in
the composite, causing a slight bulge on the rear surfaces of the panel.

On completion of the panel experiments, the three types of
helmets were ballistically tested, using the same threats. Shots were
fired at the center and radially across the helmets to evaluate obliquity
effects. The 5.56 and 7.62mm projectiles defeated all three types of
helmet, regardless of the impact angle. Similarly to the flat panel tests,
the Kevlar composite helmet defeat the 9mm, 124 grain FMJ bullets.
The W.W.II helmet, with nylon reinforced liner did not, but the
prototype Spectra composite helmet did defeat the 9mm threat.

Examination of photos of helmets from survivors of Operation Just
Cause indicated that a number of the impacts were glancing or grazing
hits, and several were oblique impacts where the projectile had been
deflected away from the head. According to our experiments the
survivors were very fortunate that these were glancing impacts. In our
ballistic testing if it was a fair hit, at reasonably small angle, in the
majority of cases the projectile was deflected towards the wearers
head. In only one out of ten hits was the bullet deflected away.
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Let us briefly consider kinetic energy (KE) of the different threat.
The 17 grain fragment at 2000 fps has a KE of 151 foot pounds,
whereas the 124 grain 9mm projectile has a KE of 333 foot pounds.
Since the composite helmets stopped the 9mm round at this velocity
and KE, a higher KE would be required to penetrate at point blank
range. Considering that the pistol threat was defeated, one can
suppose that the 5.56 and 7.62 bullets might be defeated when their
impact energies dropped to near 333 foot pounds, or some slightly
higher energy. According to published values for a 55 grain, 5.56mm
grain bullet at 814 meters the velocity drops to 1556 fps, and the KE
will be 333 foot pounds. The possibility of defeating the 5.56 and
7.62mm threats was explored by long range shooting. Both projectiles
clearly penetrated 2.9 psf Kevlar composites at 200 meters. However
several rounds of each of these threats were stopped by the
composite panels at 300 meters, in our field tests. It is desirable to
precisely measure the ballistic limit of the helmet for several of these
threats. Hopefully we will accomplish this in the near future.

Arctic Environment Effects on Helmet Ballistic Performance

Thus far it had been demonstrated that the Kevlar helmets could
stop 9mm 124 FMJ bullets at point blank range. Now it was desired to
investigate whether thermal cycling to representative Arctic
temperatures had a detrimental effect on ballistic resistance.
Accordingly, several helmets were subjected to 100 thermal cycles of
an hour duration each, ranging from -60 to +60 degrees Celsius.
Subsequently one helmet was tested ballistically at room temperature
and one was shot in a cooled insulated box. This second helmet was
packed in place using polystyrene "peanuts" and chilled via liquid
nitrogen. At impact this helmet was cooled to -100 Celsius according
to an implanted thermocouple. Both room temperature and
supercooled helmets stopped the 9mm 124-grain FMJ round at point
blank range. There was a difference in behavior. In the room
temperature test the projectile was trapped in the helmet and only a
slight resulting bulge was visible on the interior surface. At -100 C the
bullet was trapped and flattened by the cooled, rigid layers and ejected
out through the surface, flat as a pancake!
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The thermally cycled helmets were also tested using a steel
cruciform sabot projectiles in the 9mm pistol. In this case the lighter,
harder projectile impacted at velocities of 1835 fps. This potent round
easily penetrated the helmets.

Determination of Mechanical Behavior

Specimen Preparation and Preconditiong

Woven Kevlar fiber composite panels for this portion of the study
were fabricated at the Army Research Laboratory (ARL), materials
Directorate, Watertown, Massachusetts. Laminated plates were
produced by wet lay-up using thermosetting polyester resin matrix and
square weave Kevlar fabric with equal number of fibers along two
orthogonal directions. Three twelve-inch square plates, with
thicknesses of 0.445, 0.465 and 0.307 inches respectively, were
selected for evaluation. The thinnest plate was reserved for later
determination of ballistic limit velocity, V50.

Specimen dimensions were chosen for convenience with 0.75 as
nominal width so that at least ten specimens could be obtained from
each plate after some loss and wastage in the cutting process. Initial
efforts to cut these specimens at Cold Regions Research and
Engineering Lab (CRREL) were quickly abandoned in favor of the
more experienced machinists at the ARL, Watertown. Machining
Kevlar composite is a formidable challenge to the inexperienced, and
the ARL facility had suitable machines and protection systems from
dust and fumes. The specimens were cut using a diamond coated
saw at a slow cutting feed (0.5 in/min) with continuous cooling fluid.
The resulting specimen had reasonably smooth, clean edge surfaces.

One intact plate and ten selected specimen were thermally cycled
between -60 and +60 degrees centigrade for 100 times in order to
simulate exposure to a severe Arctic environment. This was
accomplished in a liquid nitrogen cooled computer controlled thermal
cycling chamber in which the specimens were kept in racks, and
cooling or warming air, depending on which cycle had been activated,
would circulate in the chamber with unhindered access to specimen
surfaces. Each tLmperature cycle was programmed for one hour, so
that at the end of, say the warming cycle, the cooling cycle would
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automatically begin. Thermocouple records indicated it took about 10

minutes to reach specified temperature (-600C).

Tensile Testing

In order to prevent failure or cracking within the tensile machine
grips, each specimen was prepared with end tabs at both ends. The
tabs were made of 1/4 inch thick polycarbonate, each approximately 3
inches long and bonded with a quick setting adhesive. A servo-
hydraulic machine using hydraulic grips was used for tensile testing.
Each specimen was carefully aligned using bubble levels, and load
was applied at a constant displacement rate of 0.005 in/min.
Extensometers were mounted at mid gage section to measure
average displacement and to allow calculating strain. Individual load-
displacement curves were recorded via an X-Y plotter. Both the
thermally cycled batch A specimens and the uncycled batch B
specimens started producing a cracking sound when the applied load
reached close to 85 to 90% of the failure load. All specimens failed in
the gage portion, away from the end tab grips, although there was a
general difference in overall failure location between batch A and B
specimens as discussed later. Typically the failure zone spread
through the thickness and over a length of approximately two inches,
showing extensive damage by delamination, matrix cracking and
interply failures.

Observed Tensile Response

Figure 1 illustrates the sturdy grips, extensometer and tensile
specimen used. Note the 12 inch long, nominal 5/16 thick and 3/4
inch wide Kevlar polyester specimens had 3 inch long, 1/4 thick
polycarbonate bonded tabs for load transfer. Experimental results are
summarized in Figures 2 and 3. Figure 2 presents tensile data for the
as received, 2.9 psf Kevlar composite. The average tensile strength
was 57,432 psi with standard deviation of 2,636 and with values
ranging from 52,285 to 62,044. Average failure strains were .0194,
ranging from .015 to .024 in/in. Modulus was estimated as a "secant"
modulus via failure stress. Average "secant" modulus was 3,021,865
psi. Figure 3 illustrates behavior of the specimens which were
exposed to 100 cycles of -60 to +60 degrees C. Now the average
tensile strength was 52,946 psi, ranging from 48,542 to 56,057 psi.
Total strain to failure was .0213, ranging from .0170 to .0265 in/in.
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ROOM TEMPERATURE DRY SAMPLES

-----------------------------------------------
SAMPLE DENSITY AREA FAILURE FAILURE FAILURE SECANT

LOAD STRAIN STRESS MODULAS
(lb/in cub) ( in sq) (bf) (in/in )(psi) (psi)

-----------------------------------------------------------------------
B - 1 0.044 0.35 20800 0.0200 59710 2985520
B - 2 0.042 0.36 20800 0.0160 57316 3582254
B - 3 0.041 0.37 20800 0.0155 55570 3585187
B - 4 0.043 0.32 18800 0.0220 58690 2667728
B - 5 0.042 0.37 21200 0.0195 57463 2946845
B - 6 0.042 0.36 21200 0.0195 59005 3025894
B - 7 0.042 0.36 19600 0.0210 54480 2594279
B - 8 0.041 0.37 21600 0.0210 57961 2760065
B - 9 0.042 0.34 21200 0.0240 62045 2585189
B - 10 0.038 0.37 19200 0.0150 52285 3485687

----------------------------------------------------------------------.
AVERAGE 0.042 0.36 20520 0.0194 57453 3021865

ISTD DEV 0.002 0.02 913.02 0.002820 2636 376952

60 x 10

50 ./ . .. Sample No.
"-"'/I // B104.\# """ B2

C 40 --
-. " - B3

,./i
-- 30 -

3 ............... B5
SB5

20 - -. B76

B8

10.// B9

o " I I I I I I I

0 0.01 0.02 0.03 0.04

Strain (in./in.)

FIGURE 2. TENSILE RESPONSE: AS RECEIVED SPECIMENS
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THER•MALLY CYCLED BETWEEN -60 TO +60 DECREES C 100 TIMES (DRY SAMPLES)

------------------------------------------------------------------------- I
SAMPLE DENSITY AREA FAILURE FAILURE FAILURE SECANT I

# LOAD STRAIN STRESS MODULAS I
(lb/in cub) ( in sq ) ( Ibf ) ( in/in ) ( psi ) ( psi ) I

------------------------------------------------------------
A - 1 0.042 0.34 18000 0.0180 52723 2929047
A - 2 0.039 0.36 20000 0.0265 56057 2115345
A 3 0.042 0.35 18400 0.0205 53210 2595607
A - 4 0.043 0.34 18000 0.0170 52985 3116754
A - 5 0.043 0.34 17600 0.0195 51734 2653040
A - 6 0.041 0.35 18800 0.0250 53541 2141626
A - 7 0.042 0.35 18000 0.0190 51871 2730042
A - 8 0.042 0.34 18400 0.0235 53775 2288314
A - 9 0.042 0.35 16800 0.0175 48542 2773829
A - 10 0.043 0.34 18800 0.0260 55021 2116184

IAVERAGE 0.042 0.35 18280 0.0213 52946 2545979
JSTD DEV 0.001 0.01 801.00 0.003473 1928 342390

60 x 103

50 Sample No.

Al
-~ - ~ A2

d 40
- - -A3

------- A4
u) 30 .yAU ............... A5

- A6-
20 A7 A7'- A8 -

10 / . A9
---...... A 10 _

I I I I ! I
0 0.01 0.02 0.03 0.04

Strain (in.in.)

FIGURE 3: TENSILE RESPONSE: COLD CYCLED SPECIMENS
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Secant modulus averaged 2,545,979 psi. It was observed that cold
temperature cycling resulted in decrease in tensile strength, increase
in failure strain and decrease in average secant modulus.
Examination of the failed tensile specimen revealed that much more
extensive interlaminar cracking occurred in the cold-cycled composite.
Furthermore, the cycled samples all failed near the mid portion of the
gage section whereas the unexposed specimens failed in 5 out of 10
cases near to the end tabs. Refer to the stress-strain curves shown in
Figures 2 and 3. Note that the unconditioned composite tended to
have concave upward curvature, while the thermally cycled specimens
behaved either more linearly or had concave down curvature!

Summary

Kevlar composite helmets performed satisfactorily in defeating
9mm 124-grain FMJ bullets at point-blank range after 100 cycles
between -60 and +60C. However when tested at -100C, failure modes
changed and the composite did not trap the projectile, but suffered
more delamination and deflected the round outward. Our ballistic
performance results are qualitative, and it is suggested the V50
ballistic limits be determined for the as-received and exposed
composite to obtain quantitative data. Tensile strength and secant
modulus of Kevlar/polyester composite decreased observably after
thermal cycling, probably due to the effect of microcracking and
interface damage from thermal cycle-induced stresses. The stress-
strain response was affected after cold cycling: changing from a
concave up to concave down curvature and larger damage zones
occurring, which results in an apparent progressively decreasing
modulus. Total strain to failure increased and the composite exhibited
more extensive delamination and microcracking after 100 cycles of
exposure. It is likely that the stress strain curvature observed is a
function of location of the failure zone with reference to the
extensometer measuring position. If the failure zone is located right
between the nominal 1 1/2 inch extensometer averaging length then
the curve would tend to be concave down and reversed if failure is
occurring outside the extensometer position. One matter for
conjecture: why did the unexposed specimen tend to fail near end
tabs, outside the extensometry location? Were their fabrication
induced residual stresses near the plate extremities which induced
failures towards the sample ends? Thermal cycling could have
changed the residual stress distribution and failure zone location.
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Finally it is suggested that additional data should be gathered on
currently fielded representative spall liners. And in conduct of tensile
tests, the strain measuring procedures must be improved to obtain
more realistic effective composite modulus estimates.
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Abstract

An experimental program was conducted to investigate the
effect of outer ply constraint on the tensile strength of geometrically
scaled composite graphite-epoxy coupons having a core of 900 plies
located at the midplane of the laminate. The specific laminate stacking
sequences were [+00n/-0 0n/9 0 °2n]s, where n=1, 2, 3, and 4,
corresponding to 1/4, 1/2, 3/4, and full-scale sizes. The outer ply
orientations were Varied from 00 to 900, in 150 increments. Results of
the tensile tests indicate a scale effect in strength with a trend of
decreasing strength with increasing specimen size for ply level scaled
coupons. The magnitude of the strength scale effect is a function of
the outer ply constraint. In general, fiber dominated [00/90 0] cross ply
laminates and the pure 900 laminates showed only a minor scale
effect, while all other lay-ups exhibited a significant size dependency in
strength.

Introduction

Scale model testing of composite structures has been an active
topic of research in recent years. Ultimately, the goal of this research
is to develop the scaling laws that would permit data generated on
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coupon-size specimens to be "scaled up" to predict full-scale structural
behavior. The behavior, or property, of interest might be stiffness,
strength, coefficient of thermal expansion, natural vibration frequency,
or failure mechanism, etc. A scale effect, then, is defined as the
dependence of a material property on specimen size. For example, if
two composite coupons are built such that one specimen is scaled
geometrically to be 1/2 the size of the other specimen, and both
specimens are constitutively scaled, then the ratio of tensile strengths
of the two coupons should be equal to 1.0. If the ratio of strengths is
not equal to 1.0, then a scale effect is present.

Sub-scale composite structures can be fabricated using several
approaches, due to the inhomogeneity of the material itself and the
layered construction. Ideally, a true scale model composite structure
would be fabricated from a microscopically scaled pre-preg material
having scaled fiber diameters. Since this technique is not feasible, two
other macroscopic scaling approaches are used, the ply level and
sublaminate level scaling techniques. In ply level scaling, the baseline,
or model, stacking sequence is "scaled up" by increasing the number
of plies for each angular orientation in the baseline laminate stacking
sequence. Thus, plies of similar orientation are blocked together. In
the sublaminate level scaling approach, the baseline stacking
sequence is treated as a sublaminate which is repeated to "scale up"
the thickness of the full-scale laminate. Sublaminate scaled specimens
have dispersed plies, as opposed to blocked ply groups in ply level
scaled specimens.

Previous research [1-4] has shown that the strength of ply level
scaled composite tensile coupons is dependent on specimen size.
Specifically, sub-scale models can exhibit significantly higher failure
stresses than their full-scale counterparts. Conversely, research [4,5]
has shown that geometrically scaled tensile coupons fabricated using
the sublaminate approach exhibit increasing strength with increasing
specimen size. The magnitude of the size effect is dependent on the
laminate stacking sequence, and is influenced by the type of damage
initiated in the laminate and the manner in which the damage
propagates. Matrix dominated laminates containing 900 core plies
were found to be particularly size dependent [1], largely due to the
presence of transverse matrix cracks which develop in the 900 plies
and serve as sites of delamination, or as stress concentrations in
neighboring plies. Thus, an experimental program was conducted to
highlight the effect of outer ply constraint on the tensile strength of
geometrically scaled composite coupons having a core of 900 plies
located about the midplane of the laminate.

This study differs from previous research [6] on laminate or ply
thickness effects in tensile strength of composites in that the coupons
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are geometrically scaled in all three dimensions. While thickness has
been shown to be the most important scaling dimension in determining
laminate strength [4,5], it is difficult to isolate scaling effects using
specimens with distorted geometry. For example, if the in-plane
dimensions of two coupons are the same, but the thicknesses are
different, then the effects from factors such as edge stresses and
specimen volume are not scaled. Consequently, the conditions for
similitude are not satisfied.

Also, this study is different from previous research [7-12] on the
effect of ply constraint on the in situ strength of 900 core plies in the
sense that the ratio of outer ply thickness to the thickness of 900 core
plies is constant for all ply level scaled coupons. In most of the earlier
work on this topic, the thickness ratio is altered for different specimens
by increasing the number of core plies relative to the number of
constraint plies. For this case, the change in thickness ratio affects the
initiation of transverse matrix cracking in the 900 plies due to the
increased core thickness and the reduced in ply constraint. Various
analysis techniques [7,8,10,11] have been developed to model this
effect which are typically based on energy methods. However, when
these analyses are applied to ply level scaled tensile coupons with
constant thickness ratios, they yield critical stress ratios for initiation of
transverse cracking of 0-1/ 2 , where k is the scale factor (1/4, 1/2, 3/4)
between the model and full-scale coupon. Thus, the analyses predict
the same trend, regardless of the stiffness or constraint provided by the
outer plies of the laminate. Results of this experimental study will show
the effect of constant thickness ratio (thickness of 900 core plies to
thickness of constraint plies) on the tensile response and strength of
scaled composite coupons.

Experimental Program

Specimens -were fabricated from AS4/3502 graphite-epoxy pre-
preg composite 'material. Four different size coupons were constructed
with in-plane',dimensions of 0.5*n x 5.0*n inches, where n=1, 2, 3, 4
corresponj"s to 1/4, 1/2, 3/4, and full scale factors, respectively. The
laminate, stacking sequences were chosen to be [+0°n/-0°n/ 9 0 °2n]s
wherO ranged from 00 to 900 in increments of 150, and n varied from
1 tF•4. In addition, a set of unidirectional coupons, [0 °]8n, and a set of

)Auasi-isotropic, [+4 5 0n/-4 50n/O0 n/9 0 °n]s, coupons were tested.
,- Laminates fabricated in this manner are scaled at the ply level since

/ the specimen thickness is increased by blocking several plies of similar
angular orientation together. In addition, a set of 1/2 scale specimens
were fabricated having a [(+0°/-00/9002)2]S laminate stacking sequence
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where 0 varied from 00 to 900 in 150 increments. These coupons were
rabricated by repeating a sublaminate group and are, thus, scaled on a
sublaminate level. The sublaminate level specimens were included to
examine the effect of thickness scaling technique on the initial
response and mode of failure as compared to the ply level scaled
specimens. One specimen of each size and lay-up was examined
using dye penetrant x-ray technique to determine the initial damage
state. Five data channels were recorded for each specimen including
load, displacement, strain from gages applied at the midspan of the
coupon, and strain from an extensometer. Tensile load was applied to
the coupon by a load test machine through mechanical wedge-type
grips. The grip distance was scaled as 0.075*L, where L is the gage
length of the coupon. Also, a thin piece of abrasive cloth was placed
around the grip area of the test specimen for improved friction. All
coupons were loaded until ultimate tensile failure.

Results

Approximately 250 tests were performed on ply level scaled
composite coupons, including six replicate tests of each size and
laminate stacking sequence. Initial modulus and strength data for each
lay-up and specimen size were averaged and the results listed in Table
1. The modulus and strength data for the ply level scaled coupons
were normalized by the full-scale value, corresponding to n=4, for each
laminate family and plotted versus size n=1,2,3, as shown in Figures 1
and 2, respectively. If no size dependencies were observed, all data
would fall on the horizontal line drawn at 1.0 in each plot. It is evident
that the variation in initial modulus with size is small, for most laminates
within t 5 to 10%. Since this scatter is approximately the same as the
specimen-to-specimen variation, it is reasonable to conclude that there
is no size effect in initial tensile response, or modulus. The size
dependency on ultimate strength is much larger. In general, the
strength of sub-scale coupons is significantly greater than the strength
of the full-scale prototype, in some cases by as muchi-,as a factor of
two. The size effect is less pronounced in the unidirectional [00], cross
ply [00/900], and pure [900] laminates. However, when the aYýle, 0, of
the surface plies has a value other than 0' or 90', a large size effect is
observed. For these laminates, the constraining effect of,,the
neighboring ±0o plies and the ply thickness of the 900 core become the
primary factors controlling damage initiation and propagation. \

No size effects were observed in initial tensile modulus based ,
on the method of increasing the thickness, either by blocking the plies K,
(ply level scaling) or by repeating a sublaminate group (sublaminate
level scaling), for the 1/2 scale specimens. However, large differences
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were found between the two methods of scaling with respect to
strength. As shown in Figure 3, the normalized strength of the 1/2
scale coupons with distributed plies was, in general, higher than the
comparable ply level scaled coupons with blocked plies. In fact, when
compared to the 1/4 ply level scaled specimens, the 1/2 scale
sublaminate specimens exhibit an increase in strength with size, the
opposite effect shown by the ply level 1/2 scale specimens. This
phenomenon has been previously studied by Kellas, et al., [4,5], and
can be explained by the influence of outer ply constraint on the 900
core plies for specimens having lay-ups similar to the ones tested in
this study [5].

Stress versus strain plots of ply level scaled coupons from each
laminate family are shown in Figure 4. A typical specimen of each size
and laminate type was chosen for a comparison of tensile stress-strain
response. For these plots, it is important to note that both stress and
strain scale as 1.0, i.e., the stress and strain states in both the full-
scale and sub-scale coupons of a specific laminate family should be
the same. Consequently, all scaled coupons for a given laminate type
should exhibit the same response, regardless of specimen size. The
results depicted in Figure 4 indicate that for most laminate families, the
response curves for specimens of different sizes are not coincident. In
fact, all of the laminate families show differences in response as a
function of specimen size, prior to ultimate failure, with exception of the
unidirectional [0°] and transverse [900] stacking sequences. The
unidirectional coupons exhibit an ultimate failure mode of fiber
fractures and longitudinal splitting. Any intermediate damage prior to
ultimate failure does not alter the response curve. Likewise for the
transverse coupons, [90 0]8nT, uitimate failure occurs when the tensile
stress reaches the point to cause unstable crack growth in the matrix.
No other intermediate failure mechanisms are possible for these
coupons. Results for all other ply level scaled laminate families
indicate a scale effect in damage initiation and propagation, as well as
in ultimate failure. Typically, full-scale specimens exhibit the first
indications of damage, such as a sudden loss of stiffness, followed by
the next smaller sized specimen, and so on, as shown in Figure 4.
Previous research [5] on damage evaluation in sublaminate scaled
tensile coupons has shown a delay in transverse cracking and
delamination onset for increasing specimen size.

Discussion of Results

Testing for this project is yet to be completed. Thus far, only
information on the stress/strain response and ultimate failure of [+On/-
On/ 9 02n]S geometrically scaled laminates was generated under
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continuous tensile load until catastrophic faiilure. No evaluation
techniques were used to determine the damage state of the coupons at
intermediate load levels. Data such as stress at damage initiation and
stress at onset of delamination in the scaled specimens will be
obtained during the second phase of this research project.
Consequently, the discussion of results will focus on ultimate strength
data. In addition, comments will be made concerning analytical
approaches used to predict first ply failure and delamination onset for
the class of laminates considered.

Initial Damage Evaluation The damage evaluation of virgin
specimens using dye-penetrant x-ray technique indicated that
transverse matrix cracks were present in the 900 core plies of ply level
scaled o = 00 and 150 half-scale coupons, in the o =00, 150, and 300
three-quarter scale coupons, and in the o = 00, 15°, 300 , 450 and
quasi-isotropic full-scale coupons. None of the 1/2 scale sublaminate
coupons were damaged initially. The pre-existing matrix cracks
developed from residual stresses in the coupons. Ideally, within the
assumptions of lamination theory, all ply level scaled specimens within
a laminate family should experience the same residual stress state.
However, none of the one-quarter scale coupons showed any cracking
prior to loading. Thus, a scale effect in the initial state of the cured
specimens is observed. It is expected that as the undamaged
specimens are loaded, the applied stresses combined with the residual
stresses will produce matrix cracking. The specimens with pre-existing
matrix cracks did not exhibit any significant change in initial
stress/strain response due to the presence of the cracks, as shown in
Figure 4. Previous research by Kellao, and Morton [1] has shown that
the pre-existing matrix cracks in 900 core plies can influence the
damage mechanism of larger size coupons, as compared with the
smaller scaled coupons, and, in this manner, contribute to the strength
scale effect.

Scale Effects in Stiffness The stress/strain responses shown in
Figure 4 indicate that all scaled specimens within a !aminate family
exhibit the same initial response curve, and, thus have the same initial
stiffness. However, as mentioned in the previous section, some of the
1/2, 3/4, and full-scale coupons are damaged initially. Obviow'sly, the
pre-existing matrix cracks have little influence on the initial stiffness
which is determined primarily by the outer plies of the laminate and the
transverse constraint imposed by the 90° plies which is not affected by
cracking.

Scale Effects in Ultimate Strength Some of the results shown in
Figure 2 are typical of data obtained from previous studies on scale
effects in the tensile strength of composite coupons. For example, in
the reference by Kellas and Morton [1], strength data is presented for
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[+30°n/-30°n/90 02n]s scaled lay-ups fabricated from the same
AS4/3502 material used in this study. The normalized strengths from
both sets of data are nearly identical. The unique contribution of this
study, however, is that a complete and systematic set of scaled
coupons of a certain class of laminates was tested under tensile load
until failure. Previous research on cross plied laminates in which the
number of 900 core plies is increased relative to the number of
constraint plies has demonstrated that as the absolute size of the 900
layer increases, the stress required to cause transverse cracking is
lowered [8-12]. This observation correlates with the data obtained in
this study.

Failure Analysis The tensile strength data generated from tests
on geometrically scaled coupons illustrate the need for a size
dependency in failure criteria for composite materials. Currently, many
of the stress and strain based criteria, such as maximum stress,
maximum strain, and tensor polynomial, do not account for size effects,
and, consequently, cannot be used to predict the failure of scale model
composite structures. Analytical techniques which have been used to
predict the strength scale effect including a Weibull statistical model
[13-15], and a fracture mechanics model [16] will be discussed.

Weibull Statistical Approach Weibull statistical models are
based on the concept that for a given volume of material a certain
number of defects exist with a probability that a critical defect is
present. As the volume increases, the probability that a critical flaw
size exists in the material also increases. The critical flaw size is the
size of defect which will initiate failure in the material at a certain load
or stress level. The Weibull model uses an empirical value, the shape
parameter, p, which is a measure of the variability, or scatter, in the
strength of the material, itself. Ideally, 1p is a material property and may
be determined from many tests on a single specimen configuration, or
from specimens of two different sizes. Thus, knowing the value of P, a
prediction of strength for a given volume of material can be made. The
Weibull statistical criterion is given by Equation 1 for specimens which
have different volumes, such as scaled specimens,

(Sult)m

- = (Vp/Vm) 1/ (1)
(SuIt)p

where the subscripts m and p refer to model and prototype,
respectively, V is volume, and Sult indicates ultimate strength. Values
of p have been determined previously [15] for 900 transverse coupons
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of AS4/3501-6 material to be 7.63. In this study, values of p were
determined using the ultimate tensile strength of 1/4 and 1/2 scale
laminates fabricated of AS4/3502 material for all of the ply level
coupons. The p values ranged from 4.1 to 75.8. The value for
unidirectional coupons was 16.3. Clearly, the definition of a critical flaw
size for composite materials is a complex issue and the presence of a
defect will have a different outcome depending on fiber orientation for
unidirectional composites, and stacking sequence for laminated
composites. Moreover, in the case of scaled laminated composites
which do not exhibit the same mode of failure, the definition of a critical
flaw size may also depend on specimen size.

Since the Weibull statistical approach assumes that the failure
events which happen in specimens of different size fabricated of the
same the material are self-similar, it is inappropriate to apply this
technique for most composite laminates which tend to fail in a complex,
progressive mode. For many laminates, the 1/4 and 1/2 scale
coupons fail in a similar mode, but a different failure mechanism may
occur in the 3/4 and full-scale coupons of the same laminate family.
Thus, the shape parameter determined from the 1/4 and 1/2 scale
specimens is not valid for other laminates in the same family. The
Weibull approach would be expected to correlate best for composite
laminates whose failures represent basic material behavior and are
generally statistical in nature, such as fiber fractures in unidirectional
coupons [00], or transverse matrix cracking in purely 900 coupons.
However, the shape parameters obtained from these types of
laminates do not apply to other, more complex laminates.

An additional problem with the Weibull approach is in the choice
of critical volumes when the technique is used to predict flexural
strength using data gathered on tensile coupons. For that case, what
critical volume of the stressed beam should be chosen? This issue
was discussed by O'Brien, et al., [15] and their suggestion is that "for a
non-uniform stress field with finite stress concentrations, the maximum
tensile stress and the total volume of material stressed in tension
should be used in a scale law for transverse tensile strength to predict
matrix cracking or delamination". This method may prove successful
for 900 and/or 00 laminates, but is not recommended as a predictive
methodology for the ultimate strength of other laminates with more
complicated failure modes.

Fracture Mechanics Approach The analytical techniques used
to predict the stress at damage initiation, and stress at onset of
delamination, will be discussed with respect to scaled laminates in
which the ratio of constraining plies to 900 core plies is the same for all
coupon sizes within a laminate family. The following equation was used
by Flaggs, et al., [8] to determine the in situ transverse failure strain of
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a 900 core ply as a function of its thickness, and the extensional

stiffness of the adjacent constraining plies.

(E2)cr = [bEom/(d2 bEo + d3 E2 )]1/ 4  (2)

where (E2)cr is the critical failure strain in the 900 core ply
b is the thickness of the constraining plies
E0 is the stiffness of the constraining plies
m is G 2 3 (Gic)2/(E 2)3

d is the thiCkness of the 900 ply
E2 is the transverse modulus of the 900 ply

If a dimensional analysis is performed on Eq.2 and , assuming that the
critical strain energy release rate, Gic, is a material property and,
therefore, scales as 1.0, the critical strain to cause transverse failure of
the 900 plies scales as x-1/ 2 , where x is the scale factor. This is true for
all laminates regardless of the orientations of the constraining plies.
Thus, without empiricism, Eq. 2 is not laminate specific for ply level
scaled specimens, although, in general, the correct trend of decreasing
failure strain with increasing size is predicted.

A closed form equation for determining the critical strain energy
release rate has been developed by O'Brien [17] which incorporates
the critical strain at delamination onset, and the stiffness change
caused by delamination of the composite laminate. The equation has
the form:

Go = (Ed)2tL/2(E-E*) (3)

where Gc is the critical strain energy release rate, Ed is the critical strain
at the onset of delamination, tL is the thickness of the laminate, and (E-
E*) is the change in stiffness between the total laminate and the
delaminated laminate. Equation 3 can be solved for the critical strain
at delamination onset for ply level scaled laminates. The critical strain
energy release rate, Gc, is now assumed to be a known material
property, and the change in modulus may be analytically predicted
using lamination theory. Ideally, for ply level scaled laminates, the
delamination site should occur at the same location and, consequently,
the (E-E*) parameter is the same for ply level scaled coupons. A
dimensional analysis of this equation indicates that the critical strain at
delamination onset scales in proportion to x-1/ 2 , where k is the scale
factor. Thus, the equation for prediction of delamination onset is not
laminate specific for ply level scaled specimens, i.e., it predicts the
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same %-1/ 2 trend regardless of the lay-up of the ply level scaled
coupons. Equation 3 was used successfully to predict the trend of
increasing strength with specimen size for sublaminate scaled tensile
coupons in Reference [5]. For sublaminate level scaled coupons, the
(E-E*) parameter is not identical for scaled specimens. Consequently,
the stiffness parameter contributes to the ratio of critical delamination
onset strains for scaled specimens.

Conclusions

A study was conducted to examine scale effects in the tensile strength
of a class of laminates having a core of 900 transverse plies located at
the midplane of the laminate. The lay-ups were [+O0n/-O0n/9 0 °2n]s,
where n=1, 2, 3, and 4, corresponding to 1/4, 1/2, 3/4, and full-scale
factors. The outer ply orientations were varied from 00 to 900, in 150
increments. Specimens were both geometrically and constitutively
scaled. Results indicate that initial modulus is independent of
specimen size. However, the first damage event and the ultimate
failure are influenced by specimen size. The trend is that strength
decreases as specimen size increases. The magnitude of the strength
scale effect is determined by the laminate stacking sequence. In
general, fiber dominated lay-ups and pure 900 transverse ply lay-ups
exhibited the smallest effect, while all other laminates showed a
significant influence of specimen size on strength.

Analytical techniques such as Weibull statistical and fracture
mechanics based approaches were discussed with respect to the
strength scale effect. Both techniques are capable of predicting a size
dependency in failure events or strength. However, the Weibull
approach requires an empirical shape parameter which is dependent
on the laminate stacking sequence and is not a material property. The
fracture mechanics approach predicts the same trend for all ply level
scaled composite coupons, regardless of stacking sequence, and thus,
is not laminate specific.

Further Research

A study is planned in which a set of specimens similar to the
ones used in this study are examined for initial damage, then loaded to
a stress level of interest, removed from the test machine and evaluated
for damage growth, and so on, as a means of understanding the
influence of specimen size on damage initiation and propagation. In
this manner the damage events may be thoroughly characterized and
a predictive model may be developed for failure of composite laminates
which incorporates the effect of specimen size.
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Figure 1. Normalized Modulus versus specimen size for ply level scaled composite tensile
coupons. Sub-scale modulus values (n=1,2,3) have been normalized by the full-scale value (n=4)

for each laminate family.
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Figure 2. Normalized strength versus size for ply level scaled composite tensile coupons. Sub-
scale strength values (n=1,2,3) have been normalized by the full-scale value (n=4) for each

laminate family.
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Figure 3. Normalized Strength versus angular orientation (0) for ply level and sublaminate level 1/2

scale tensile coupons. Strength data were normalized by the ply level values for each lay-up.
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scaled tensile coupons

181



[+30n/-30n/902n]s
50

40

30 n=4

S20

1'0

0.2 0.4 0.6 0.8
Strain, %

[+45n/-45n/902n]s
25

20

15

S10

5

0I I I

0 0.2 0.4 0.6 0.8
Strain, %

[+60n/-60n/902n]s
10 I

8

6

m • •.......... n=1
4 --- n=2

- n=3

2 n=4
01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Strain, %

Figure 4. (cont.) Stress vs. Strain plots of ply level
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ABSTRACT

Finite element procedures for micromechanical analysis of textile
structural composites are described. A method for predicting the
engineering strength properties of textile composites is presented. In thin
textile composites the stress gradients through the thickness are
significant, and hence it is suggested that they may be modeled as
homogeneous plates rather than homogeneous continua. Procedures for
determining the plate stiffness properties and plate coefficients of
thermal expansion are given. The failure envelope for a thin textile
composite beam is described in the space of force and moment
resultants instead of the stress space. Difficulties in finite element mesh
generation are discussed, and a novel decomposition scheme is
suggested so that regular elements can be used in micromechanical
analyses.

1. INTRODUCTION

Recent developments in composites manufacturing technology
are concerned with fabrication of near-net shape preforms, and
introducing the matrix material using processes such as Resin Transfer
Molding. Textile processes such as weaving and braiding can turn large
volumes of yarn into dry preforms at a faster rate, thus reducing the cost
and the cycle time. Unlike laminated structures, the three-dimensional
woven or braided composites do not posses the weak plane of
delamination, and have greater through-the-thickness strength, increased
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impact resistance and fracture toughness. With the development in the
aforementioned technologies, there is a need for developing efficient
micromechanical analysis tools for predicting the thermomechanical,
electromagnetic and other transport properties of these materials.
Estimates of strength can also be made from micromechanical analyses.

1.1 Micromechanical Models
The micromechanical analyses for textile composites can be

broadly classified into three categories: mechanics of materials type
models'-5 , energy based approach, and finite element analysis of the unit
cel16 -13. All of the above models recognize that there is a representative
volume element in the composite material, and they attempt to model
the material as a homogeneous, but anisotropic - usually an orthotropic -
material. In the mechanics of materials type models, the yarns are

approximated as simple structural elements, eg., beams, plates,
laminates etc., and their deformation behavior is assumed to be
governed by the corresponding structural constitutive relations. The
kinematics is also simplified to a great extent, and a relation between
the overall deformation of the unit-cell and the average forces are
derived. The energetic approach is similar to the previous one, except
that the strain energy in the unit-cell is evaluated based on some
assumed displacement field, which is usually an oversimplification of
exact displacements. The elastic constants are derived by equating the
strain energy in the approximate model and the homogeneous
composite. Mostly energy based approaches provide bounds for the
homogeneous properties, and can be used as a check for experimental
observations or other theoretical models.

The third method is the rigorous micromechanical analysis of the
unit-cell, which often requires the use of numerical methods such as the
finite element method, and also uses the exact three-dimensional
constitutive relations for the yarn and the matrix material.
Micromechanical models, in general, assume that unit-cells exist in all
three dimensions, and determine the apparent homogeneous properties
at a scale much larger than the dimensions of the unit-cell, but
comparable to the dimensions of the structural component. The average
stresses at a point at the structural scale will be called macrostresses.
The actual stresses at a point at the continuum level will be called the
microstresses. Another inherent assumption in micromechanical
analyses is that the macrostresses do not vary rapidly so that they can
be assumed to be nearly constant within a unit-cell. However the
microstresses within the unit-cell are bound to have significant variations
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because of discontinuities in the properties of the constituent materials.
The objective of any micromechanical model is to predict the
homogeneous properties of the composites, for example, elastic
constants that relate the macrostresses to the macrostrains.

1.2 Stress Gradient Effects
The methods explained in the previous section assume that unit-

cells exist in all the three directions in the textile composite. This will be
true in the case of thick textile composites. However there are many
applications in which thin composites are used. In fact, in order to take
advantage of the properties of composites, the structures have to be
made of thin plate like members with stiffeners for load transfer. In such
cases there will be fewer unit cells in the thickness direction. Thus the
free surface effects will be predominant. There will be severe stress
gradients through the thickness, and they will have an influence on the
apparent stiffness and strength of the structure. In such situations it will
be useful to define the constitutive relations in a form that captures the
effects of the through-the-thickness gradients. Plate theories provide a
framework for achieving this. In other words, the textile composite can
be approximated as a homogeneous plate (or shell) rather than a
homogeneous continuum. Another advantage to this approach is that
most of the structural analysis procedures and codes use plate models,
and require plate properties as input. Then it is natural to provide the
homogeneous plate properties of the textile composite. A similar
situation exists even in thick textile composites near the free surface. If
numerical methods are used for structural analysis, then the interior of
the composite can be modeled as a homogeneous continuum, and the
portions near the free surfaces as plates. The strength theories can also
be modified so that they can be expressed in the space of force and
moment resultants.

1.3 Scope of the Paper
In this paper the procedures for determining the thermo-

mechanical properties of textile structural composites using the finite
element micromechanical analysis of the unit-cell are described. The
focus will be on the stress gradient effects described above, methods for
determining them and their effects on the composite properties. The
properties we have considered are: (a) Stiffness properties characterized
by constitutive relations; (b) Coefficients of thermal expansion; and (c)
Engineering strength properties. The residual stresses due to curing of
the composite are also computed, and the differences between thin and
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thick composites are discussed. Difficulties in FE mesh generation are
discussed. A novel decomposition scheme is presented, in which regular
elements can be used to obtain accurate results.

2. FINITE ELEMENT ANALYSIS OF THE UNIT-CELL

A detailed account of finite element procedures for determining
the elastic constants, CTE's and failure envelopes can be found in
References 10-13. In the following sections the essential principles
governing the formulation are described.

2.1 Elastic Constants
In this paper a rectangular parallelepiped is considered as the

unit-cell and the composite will be modeled as orthotropic in the
macroscale. The length of the unit-cell in the x; direction is Li. Our
objective is to derive a macroscale constitutive relations in the form:

oi=Ci -r( VA 7), (i,j=, 2,...6) (1)

where aT and ej are the macroscale stresses and strains respectively; C,1
is the orthotropic stiffness matrix; aj represents the macroscale CTE's
and AT is a uniform temperature change. A macroscopically
homogeneous deformation can be represented as

u =Hx, i, j=1,2,3 (2)

where H,1 are the displacement gradients. The unit-cell of the composite
is modeled by 3-D solid finite elements. The unit cell is subjected to
deformations corresponding to Eq. (2) in the macroscale. The average
macrostresses required to create each deformation are computed from
the FE model. Continuity of microstresses across the unit-cell surfaces
then requires that traction be equal and opposite at corresponding nodes
on opposite faces of the unit cell. Similarly the displacements have to be
continuous too. The periodic traction boundary conditions to be imposed
on a pair of opposite faces (e.g., x1=O and x,=L,) are:

F,(L1,x2,x3) -F,(Ox 2,x), (i-=1,2,3) (3)
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u,(L ,x2,x3)-u,(O,x 2,x3) -- L, (i-=1,2,3) (4)

The above boundary conditions are enforced by using multipoint
constraint elements. The average stresses at the macroscopic level can
be found by two methods. In the first method, the macroscopic stresses
are assumed to be equal to the volume-averages of the corresponding
microstress components in the unit-cell. In the second method, the
macroscopic stresses are computed by averaging the nodal forces on
each face of the unit cell1°. In order to predict the orthotropic stiffness
matrix Ci,, we choose Hi, such that only one component of the strain is
nonzero. The corresponding macroscopic stresses for AT=O, are
computed using one of the procedures indicated above. Substituting the
values of the stresses and strains in the constitutive relation, Eq. (1), the
stiffness coefficients in the column corresponding to the nonzero strain
can be calculated. This procedure is repeated for other strain
components to obtain all the stiffness coefficients, from which the
orthotropic elastic constants of the material can be determined.

2.2 Thermo-Mechanical Properties
The textile composite, in general, will have six macroscale CTE's.

To compute them we choose H,1 such that all components of strain are
zero, i.e., H,.=O. Then the composite constitutive relation will reduce to

ai = - CjjA T, i,j=1,2,...,6 (5)

From the finite element results, the macroscopic stresses are computed
for an arbitrary temperature difference AT, which are then substituted in
Eq. (5) to obtain the CTE's. The residual thermal stresses due to the
curing process are obtained by superposing stresses due to two load
cases as explained below. In the first load case the macroscopic
deformations of the unit cell are set to zero, i.e., the composite is
constrained from contracting in the macroscale, and a uniform
temperature change is applied to all elements (ei=O, AT=-To, where To
is the curing temperature). Since the cured composite is supposed to
undergo free contraction, the forces required to restrain the contraction
in the first problem are removed by reversing the same. This can be
accomplished by imposing deformations such that ei=-cciTo. The
microstress distribution within the unit-cell obtained from each load case
are added to obtain the residual stresses due to curing.
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2.3 Strength Modeling
There are many failure criteria or strength theories for

unidirectional fiber composites. This for example includes maximum
stress theory, maximum strain theory, and Tsai-Hill theory. Even though
failure of a material is a very complex phenomenon, engineering
strength theories such as the above have been found to be useful in
design. Our approach is similar to that used by Dvorak et atP4 . A state
of homogeneous deformation is applied to the unit cell as explained in
§2.1. Assuming linear elastic behavior, microstresses can be computed
for any arbitrary state of macrostrains. We also assume that the failure
behavior of the matrix material and the yarn are known. The textile
composite is assumed to have failed, if there is failure in any one of the
finite elements, either matrix or the yarn or at the yarn-matrix interface.
By varying the macrostresses using a numerical simulation, failure
envelopes can be obtained for the idealized homogeneous material.

3. STRESS GRADIENT EFFECTS

One method of overcoming the difficulties in modeling thin textile
composites (see §1.2) is to compute the structural stiffness properties
(eg., [A], [B] and [D] of the plate) directly from the unit cell analysis
instead of the continuum stiffness properties. In the case of strength
predictions, the failure envelopes can be developed in terms of the force
and moment resultants instead of stresses. In the following we illustrate
these concepts for the case of a plain weave textile composite beam.

3.1 Beam Stiffness Coefficients
Consider a textile composite beam in the xz-plane with unit cells

repeating in the x-direction. On the macroscale, the beam is assumed
to be homogeneous and the beam behavior is characterized by the
following constitutive relation:

[P M VT=[I][LWo X yoJT-Lp aM a )TAT] (6)

where P, M and V are the axial force, bending moment and transverse
shear force resultants respectively; [K] is the symmetric matrix of beam
stiffness coefficients; eo, Kc and yo are the midplane axial strain,
curvature and transverse shear strain respectively; oxp, cv and oxM
respectively are the thermal expansion, shear and bending coefficients.
The detailed procedure for evaluating [K] is given in Sankar and
Marrey1 °. However the principles involved are described briefly for the
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sake of completion. In order to find the beam stiffness [K], three linearly
independent deformations are applied to the unit cell, namely, (i) unit
axial strain; (ii) unit curvature with a transverse deflection such that the
shear strain vanishes; (iii) unit transverse shear strain. The periodic
displacement boundary conditions for the three unit deformations are
given in the table in Fig. 1. The temperature change, AT, is assumed to
be zero. For each case, the axial force P, the bending moment at the
center of the unit cell M0, and the shear force V are computed from the
nodal forces. By substituting the values of P, M, and V in Eq. (6), one
can evaluate the stiffness coefficients. The procedure for determining the
beam thermal expansion coefficients is very similar to that given in §2.2.

3.2 Strength Models for a Textile Composite Beam
In this section we construct a failure envelope for a textile

composite under a general combination of loads. For a textile composite
beam, the failure envelope is constructed in the space of the three force
resultants P, M and V. The textile composite beam is assumed to be in
the 1-3 plane with unit-cells repeating in the 1 direction. Three linearly
independent deformations are applied to the unit- cell as explained in
§3.1. For each deformation the six microstresses, ao (i=1,...,6), are
computed at the center of each element. The influence coefficient ajk (i

(j=1 ,...,6; k=1,2,3), is defined as the jth microstress for the kth deformation
at the center of the ith element. For an arbitrary combination of loads, P,
M and V, on the textile beam, the microstresses can be found by
superposition of macro-deformations. The composite is assumed to have
failed if there is failure in any one of the finite elements in the unit-cell.
By varying P, M and V using a numerical simulation, the failure envelope
can be plotted.

IZ

S I 3 Ty'pe of deformation u(L.z)-u(O,z) w(L,z)-w(O~z)

T--1
UNIT CELL' j h/2 unit axial strain L 0

--------------------- X niNcratre LTL - X/ unit curvature Lz -L2/2

h/2 unit shear strain 0 L
L 2

Fig. 1. Unit-cell boundary conditions for a beam
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4. FINITE ELEMENT MESH GENERATION

4.1 Homogeneous Elements
By homogeneous elements we mean finite elements which are

made up of only one material. This distinction has become important in
the wake of the concept of inhomogeneous elements introduced and
studied in detail by Foye6 . More on inhomogeneous elements will be
given in subsequent sections. Traditionally finite element models use
elements that are homogeneous. In the context of textile composites, it
means that the yarn and the matrix are modeled by separate elements.
This is indeed preferable because the stresses at the yarn-matrix
interface can be computed accurately. However meshing-especially the
interstitial matrix region- becomes very difficult. The Node Migration
Method developed by the authors is described in the next section.

4.2 Node Migration Method
The unit-cell is meshed with tetrahedral solid elements in an

arbitrary fashion. This will be called the primitive mesh. The elements
are identified as homogeneous or inhomogeneous. Then the nodes of
the inhomogeneous elements are moved to the interface by using an
heuristic algorithm. In each inhomogeneous element the node closest to
the interface is allowed to migrate to the interface first. After each cycle,
some elements will transform into homogeneous elements. Then the
process is repeated until all the elements become homogeneous. The
mesh thus generated is called the intermediate mesh.

The intermediate mesh will have some elements distorted due to
node migration. This distortion can be removed by subjecting the mesh
to an annealing process15 , by which the distortions concentrated near
the interfaces in the first-stage mesh are distributed among other
elements also.

4.3 Inhomogeneous Elements
Inhomogeneous elements in micromechanical analyses were

studied in detail by Foye 6. The advantage of using inhomogeneous
elements is that mesh generation can be very simple. For example, the
unit-cell can be discretized into rectangular parallelepipeds. The stiffness
matrix of inhomogeneous elements represent smeared properties of the
two phases determined by the numerical integration scheme. Thus the
solution will be approximate in the interface regions. Foye has
developed a modified method to evaluate the stiffness matrix of
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inhomogeneous elements called Replacement Elements, which predict
better stresses than the conventional inhomogeneous elements.

The problem with inhomogeneous elements is that they cannot
represent the jump in strains that can occur at the yarn-matrix interface.
In fact there are three strain components that can be discontinuous at
the interface, but the corresponding stresses must be continuous. Such
a behavior cannot be represented by inhomogeneous elements which
assume a continuous strain fields within the element. This problem can
be resolved by decomposing the displacement field into two parts: a
displacement field {qJ} that produces a strain field continuous
everywhere in the unit-cell, and the second one {q2} that has a strain
discontinuity at the yarn-matrix interface. The field {q2} can be assumed
to be such that the displacements are identically equal to zero
everywhere in the matrix and at the interface, and exist only in the
interior of the inclusions. Thus one can use inhomogeneous elements
for solving the first set of displacements. The second set of
displacements exists only in the inclusions, and they can be solved by
discretizing only the inclusion. However the issue is determining the
decomposition {q}={q1}+{q 2}. The condition for the decomposition is that
the jump in interfacial stresses should be equal and opposite in the two
problems, since the interfacial stresses are continuous in the given
problem.

4.4 Stiffness Matrix of Inhomogeneous Elements
A method for computing [K] of a unit-cell containing

inhomogeneous elements is as follows. The elasticity matrix [C] can be
divided into two parts, C=C0+C2, where C, is equal to that of matrix
everywhere in the unit-cell, and C2 exists only in the yarn and equal to
the difference between the yarn and matrix stiffnesses. The strain
energy in the unit-cell can be evaluated as:

U=( 1)q Tf BTC1Bdv q + ( Jq TfB8TC Bdv q (7)

The first integration is performed in the entire domain of the unit-cell,
and regular elements, eg., rectangular parallelepipeds, can be used. The
second integration is performed within the inclusion. A different mesh
can be used for this integration. Since the inclusion is a simply-
connected domain, FE meshing is not a problem. The two stiffness
matrices cannot be added directly, because they are referred to different
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set of nodal displacements. A transformation matrix T between the two
sets of meshes have to be found such that

[Kq=[K1]+[T T][K 2][7] (8)

5. RESULTS AND DISCUSSION

The methods discussed in §2 and §3 were verified by considering
homogeneous and bimaterial beams for which exact solutions are
known, and applied to a plain weave textile composite beam1"' 3 . The
dimensions of the unit-cell and yarn architecture were taken from Ref.
8. The length and height of the unit-cell were 3.6 and 1.8 mm
respectively. The yarn was modeled as a transversely isotropic material:
EL=159 GPa, ET=10.9 GPa, GLT= 6 .4 GPa, VLT=0. 3 8 . The matrix was an
isotropic material with E=3.5 GPa and v=0.35. The unit-cell and their
deformations are shown in Fig. 2. The nonzero values of the [K] in SI
units were: K11 (Al l) = 27.76x10 6, K22 (D11) = 5.41, and K33 (A55) =

8.14x1 06. From K,1 the Young's modulus Ex of the textile beam may be
calculated as 15.42 GPa. If this is used to compute the flexural stiffness
as D11=Ex h3/12, one will obtain Di = 7.5 Nm, where as the actual D11
is 5.41 Nm. Similar observations can be made with regard to other
stiffness coefficients1 °. This example illustrates the usefulness of
computing the beam stiffness directly from the micromechanical
analysis. The CTE's for the textile beam were computed as12

aP=12.6x10-6 and aM=-24.12x106 . These values could not have been
obtained from the continuum CTE's of the same material.

Figures 3 and 4 depict the strength of the beam in the force and
moment resultants space 13. The solid lines refer to the continuum
hypothesis. The symbols denote beam micromechanical analysis. Both
methods used the same failure criteria for the matrix and the yarn.
However one can see from the figure that modeling the textile composite
as a homogeneous continuum leads to more conservative strength
estimates. More results for various methods described in this paper can
be found in Refs. 10-13. Examples for the Node Migration Method can
be found in Ref. 15.
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Fig. 2. Deformations in a unit-cell: (a) Undeformed; (b) axial extension; (c) pure
bending; (d) transverse shear
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Abstract

The post matrix yield problem is formulated for a finite width
hybrid composite monolayer,which contains an alternating arrange-
ment of high modulus (HM) and low modulus (LM) fibers. The differ-
ence in the axial stiffness of such fibers has an important effect on the
growth of the yield zone and stress concentration. Whether the broken
fibers are LM or HM , and whether they are edge or internal breaks
makes a difference. A material parameter, which relates the load
required to break a fiber to the load to yield the matrix,is defined, and
allows definition of a unique stress concentration factor which
considers matrix yielding.

Introduction

Hybrid composites, where more than one type of fiber is
contained in a common matrix,provide a means to develop an optimum
balance between stiffness and strength. In the analysis of failure
mechanisms,the stress concentration which occurs near fiber breaks,
together with the level of matrix yielding, are important cosiderations.
The fiber load concentration determines a load sharing rule, which is
used in statistical models of strength prediction as discussed by
Fukuda(1 985), and Zhu etal(1989). To date, load sharing rules have
been based on an elastic matrix response at the fiber break. Matrix
yielding can have an important effect on such rules, especially for
metal matrix composites.

In the present work, the problem of matrix yielding at fiber
breaks is formulated for a finite width hybrid composite monolayer.
The shear lag model, which continues to be useful even in cases of
relatively stiff matrices [Reedy(1 984);Rossettos(1 987)] is used. It is
assumed that the matrix yields in an elastic -perfectly plastic sense
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only in the matrix bay between the last fiber break(in a series of fiber
breaks) and the adjacent intact fiber. This assumption is suggested by
the results given by Dvorak and Bahei-EI-Din(1988), and Goree and
Gross(i 979), and its validity is checked aposteriori by the present
results.

The hybrid parameter, R,which appears in the equations,and first
introduced by Fukuda and Chou(1 983), is the ratio of the axial stiffness
of the low modulus(LM) to the high modulus(HM) fibers. They indicated
the presence of a hybrid effect where the high modulus fibers can
sustain higher loading and elongation than when they exist alone in a
non-hybrid composite. An eigenvector expansion approach is used
here to solve the system of equations, and is very convenient for finite
width geometry, edge breaks, arbitrary values of R and other practical
configurations. The extent of the yielded region as a function of
applied load, and the fiber stress concentration near the yielded region
are determined, and the infinite sheet results of Hedgepeth and Van-
Dyke(1 967) are approached as the total number of fibers is increased,
and when R=1. The results show how matrix yielding reduces the
stress concentration (SCF). The effects of the hybrid parameter,R, are
indicated, and depend strongly on the number of broken fibers and
whether the broken fibers are HM or LM. The SCF for elastic matrix
behavior is compared with that of a yielding matrix,for a different
number of fiber breaks,and involves the introduction of a material
parameter which is a measure of the fiber breaking strength compared
to the matrix yield strength.

Analysis

In the lamina analysis,we consider a finite width sheet consisting
of 2q+1 fibers parallel to the x-axis or load direction(see Fig.1). The
center fiber is the zeroeth,and the fibers above it are numbered so that
n equals 1 to q. Below it they are numbered -1 to -q. There is an
alternating arrangement of HM and LM fibers, where one or more
fibers are broken in a continuous manner at x=O. The axial load and
displacement in the nth fiber are denoted by pn(x) and un(x). In what
follows, asterisks will also denote quantities related to LM fibers. Force
equilibrium is based on the shear lag model where fibers take the axial
load and the matrix is in pure shear, and involves a force balance
between the varying fiber load, dpn/dx , and the shear in the matrix on
either side of the fiber. For instance, the shear force per unit length
between the nth and n+1 th fiber, where the nth fiber is HM, is
Gh(u*n+l- un)/d. It is Gh(un- u*n-1)/d between the nth and n-1 th
fiber; d is the distance between fibers and h is the sheet thickness.
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The resulting equilibrium equations for HM and LM fibers
are,respectively, given by

Sd2u Gh)*

EA &u+ (')(u*,, - 2u,, + u*,,-i) = 0 (n=0,2,4,..) (1 a)
*du •-d

E*A*U + , - 2u*,, + u,,)= 0 (n=1,3,5,...) (1 b)

where EA and G are the fiber extensional stiffness and matrix shear
modulus. It is noted that in Eqs.(1), n=O is an HM fiber. The equations
are easily written when n=O is an LM fiber instead. The fiber load-
displacement relations are

p= EA dx p*. = E*A* dx (2)

To proceed further, we consider the symmetrical case as
indicated in Fig.1 where x=0 is an axis of symmetry, and the fiber
breaks are symmetrical about the n=O break. The extent of the matrix
yield region is given by x=a, and yielding is assumed to occur in the
matrix between the last fiber break and the first intact fiber. The matrix
yields in an elastic-perfectly plastic sense when the shear stress zr
reaches the yield value, Zc. The right half of Fig.1 is then divided into
regions I and II where the extent of region I is that of the yield zone.
Appropriate boundary and continuity conditions will need to be applied
to these regions. Eqs.(1) hold throughout region II, but in region I they
hold for all fibers except fibers N and N+1, where n+N is the last
broken fiber which is next to an intact fiber(n=N+l) Force equilibrium
of these two fibers contains a constant shear, Tc, above fiber N and
below fiber N+1, so that these two equations will differ from Eqs.(1). In
what follows, due to symmetry, we will consider only positive values of
n including n=O. When fiber breaks occur at the edge of the lamina,
the same approach is used. For instance, if there are three breaks at
say the n=q,q-1 ,andq-2 fibers, then the yield zone will occur in the
matrix between the q-2 and q-3 fibers. The other matrix bays in region
I, in all edge break cases studied , are tested to confirm that in fact
yielding does not occur there(ie.the shear stress is less than the yield
value Tc.

Nondimensional fiber loads,Pn, and displacements,Un, are next
defined by
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El-fAd( a
(ppP*.)=p(PP*.) ; (x,a) A G a)

(u.u*)= d (ungU*); RE*A*(3)

EAGh EA(3
The quantity p is the HM fiber load ar infinity(ie.,far from the

damaged region), 4 is a dimensionless coordinate in the x direction
and a is the nondimensional extent of the yield region (Fig.1). With
Eqs.(3), Eqs(1) and (2) become

U,. +U.+I-2U,+U*_,=O (n = 0,2,4,...)
(4)

RU,* +Un+1- 2U*+UnI=0 (n=1,3,5,...)

and

P.=UU, P.=RU* = R,_d( ) (5)

For edge fibers which are say,HM fibers,we also have

Uq +Uq1l-Uq=O (n=q) (6a)

U-q + U~q+l - U-q =0 (n = -q) (6b)

As indicated, Eqs.(4) and (6) hold in region II, but in region I they hold
for all fibers except fibers N and N+1, where n=N is the last broken
fiber which is next to an intact fiber(n=N+1). For instance ,in Fig.1,
N=2. Since we will be dealing with symmetry about fiber n=O, we need
only consider positive values of n. Therefore,in region I,where yielding
occurs, the equations for fibers N and N+1 (if fiber N is say an LM fiber)
are given by

RUk + UN_1-UN -T = 0 (7a)

UN+1 + U+ 2 - UN+1 +T=0 (7b)

If there is only one broken fiber(N=O) and is HM, then from symmetry,
the matrix yields on either side of the n=O fiber and Eq.(7a) is replaced
by
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U0 -2T=O (8)

where the nondimensional shear,T,is defined by

T = VEAdh/G('r/p) (9)
In Eqs.(7,8), T is a constant where the shear stress, T", in

Eq.(9) has the yield value, 'r,. With the nondimensionalization in Eq.(3)
it is seen that T can also be written in terms of dimensionless
displacements in the yield region between fibers N and N+1 (where N
is say LM) by

T = (Uý - UN+, )=. (10)

Boundary Conditions and Solution Procedure

The boundary conditions associated with the system of
equations given by Eqs.(4),(6a) and (7), in the symmetric case, will be
given by using subscripts I and II to refer to solutions in regions I and II
respectively. In region I, we have at c =0

U1,, = 0 (unbroken fibers); P1 ,, = 0 (broken fibers) (11)

Since all fibers are continuous at ý = a, we also have

Uz.(a)=Uj(a) ; PI,(a)= PII.(a) (12)

Note that in Eqs.(1 1) and (12) starred quantities to be used for LM
fibers have not been specified. Once a specific configuration has been
selected appropriate conditions can be written in a straightforward
manner. If a uniform strain is assumed far from the fiber break region,
then the following must also hold for nondimensional quantities at

p 00

Pe=l, P* =R, U,, =U =1 (13)

The system of equations, namely Eqs.(4).(6a) and (7a,b), are
then written in matrix form for region I as

U"-LU=O (14)
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where L is banded and U T 
= [Uq,Uq_,,... U2,U,U, ]. In the case of

one central break, Eq.(8) can be solved separately and the
system(Eqs.14) will consist of the remaining equations. A solution to
Eq.(14) is assumed in the form U = Re4. The resulting eigenvalue
problem, (L- 21)R = 0, in region I leads to eigenvalues,)1',and

eigenvectors, R', and the solution to U can be written as the
expansion,

q+1
U, 1 __ R'(Bie-i 4+ Cie-Ali ý) + UIp (15)

i=1

where U1P represents the particular solution involving the constant T.
In region ll,where Eqs.(4) and (6a) hold, the eigenvalue problem leads
to eigenvalues,flj, and eigenvectors, Y'. The +fPi are discarded to
satisfy Eq.(1 3) at -c and the solution is given by

q+1

U, = _D e-' + U11p (16)
i=1

where UT,, [ , is added to again satisfy the conditions at
infinity(Eqs.13). The constants, Bg, Cg and D are then determined by
using the boundary and continuity conditions.

Now, in order to find a relation between the dimensionless
extent of the yield zone, a, and the applied load,p, we proceed as
follows . First note that the dimensionless shear quantity,T, is given by
Eq.(10) in terms of displacements. By selecting values of the quantity
a, the defined boundary value problem yields solutions for the
displacements, U, and the value of T corresponding to the a value
selected. In the solution process, Eq.(10) is an additional equation
which is added to the system of equations(Eqs.14). The value of load,
p, which just starts matrix yielding (at r = r, and a = 0) is denoted by

pli, = PL , with its corresponding value,Tuimgi = TL,where T is defined
by Eqs.(9) and (10). We therefore have,

TL = kEAdh/G ( pL ) = (U;,N - UN+,) =o (1 7a)
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where subscript I denotes solutions in region I. Also, the value of T for

arbitrary a and p is given by

T = EAdh/G (VY p = (U>,, - UI,N+1 )ý= (1 7b)

If Eq.(17a) is divided by Eq.(17b) we obtain

TL - P (U;N -UIN+) 0 =+ (18)

T PL (U;N - U1 N+1

Eq.(18) allows calculation of PIPL for different values of a, where p is

the applied load beyond initial yield.

Results and Discussion

In the results to follow,P/PL is the ratio of the post yield applied
load to the applied load which just starts matrix yielding, R is the ratio
of axial stiffness of low modulus(LM) to high modulus(HM) fibers, and
the nondimensional extent of the matrix yield zone, a, is defined in
Eqs. (3).

In Fig.(2) the extent of the yield region, a,is plotted against P/PL
for different values of the parameter R in the case of 5 center breaks.
As indicated, the LM,HM notation is used to represent the n=0 fiber. It
is seen that the growth of the yield zone with applied load is reduced
markedly as the hybrid parameter,R, decreases from unity, and also
depends on whether the first intact fiber is LM or HM. For instance in
Fig.(2) for P/PL=5, a 40% reduction in a can be obtained when
R=1/6(HM). Note that the smaller values of R mean a greater
difference in the moduli of the HM and LM fibers.

The stress concentration factor (SCF) near fiber breaks is
exhibited in Figs.(3) and (4). It is calculated by finding the maximum
load in the adjacent intact fiber next to a series of fiber breaks (SCF is
a load concentration factor). It turns out that it occurs at the end of the
yield zone. If the first intact fiber is LM, then the SCF is given by
p*n/p*= P*n/R if use is made of the nondimensionalization in Eqs.(3),

and it is noted that p* is the load in the LM fiber at infinity for uniform
strain conditions(i.e., far from the break region). If the first intact fiber is
HM, then the SCF is given by Pn/P= Pn. Nondimensional loads are
calculated from displacements using Eqs.(5).
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In Fig.(3), the SCF is plotted against R at a fixed load level given
by P/PL=1.5, for the cases of one and five center breaks. The sensiti-
vity of SCF to R is clearly shown, with the five breaks case leading to a
higher stress concentration than the one break. While the SCF
increases for the intact LM fibers it decreases for the HM fibers as R
gets smaller. A greater hybrid effect is therefore indicated for the
smaller values of R, where the LM fibers take on more of the load.
Fig.(4) shows a similar plot involving three edge breaks with a corres-
pondingly greater sensitivity of the SCF to the hybrid parameter,R.

Now, in order to compare the SCF for elastic matrix behavior
with that of a yielding matrix, it is convenient to define the parameterLc
by

L =Pnc (19)

where p,, is the fiber critical load. It is seen that L, is a measure of the
breaking strength of the fiber relative to the yield strength of the matrix.

Since the relation between the load ratio,P/PL, and the yield
zone, a, can be determined for a given configuration(i.e.,Fig.2), and as
indicated previously, the SCF can also be related to a given value of a,
the following relations can be established.

PLIP AC PL) SCF (0

where p, is the maximum load in the first intact fiber n. Suppose a
(with corresponding P/PL) is such that p& equals p,, the value for
fiber breakage..By definition, p,/p = SCF,. Therefore at a = a,
(when p,, = p, ), Eqs.(19) and (20) give

SCFL= (21)
(P/PLX

Note that SCFC actually defines the load concentration factor just
before fiber breakage and gives a unique value for a given L,. It is
plotted against the number of broken fibers, r, in Fig.(5) for different
values of L4. The corresponding elastic case is also plotted for comp-
arison. In Fig.(5), R=1 and there are 15 total fibers. If R is not equal to
one ,Eq.(21) would still apply for HM fibers. For LM fibers we would
have SCF* = SCF/R. It is clear that the higher the fiber strength(i.e.,
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higher Lc ), the lower the SCF since more yielding takes place before

fiber breakage.
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Introduction

Recently, Rajendran [1,2] reported a continuum mechanics based
three dimensional constitutive model to describe the complex behaviors
of ceramic materials. This model incorporates the effects of
microcracks, porosity, and plastic flow on strength and stiffness of the
ceramic materials. Damage is defined in terms of an average crack
density and is treated as an internal state variable. The microcracks are
assumed to be present prior to loading. This scalar damage model
incorporates the effects of different damage processes under tension
and compression using fracture mechanics based fracture criteria.

This paper describes the application of the ceramic model to a
problem in which a steel projectile impacts a layered ceramic target.
The main objectives are: 1) to establish generality of the model
constants and 2) to demonstrate the model's ability to predict the
measured stress history under multi-axial loading conditions.. The center
portion of the target in a ballistic test initially experiences one
dimensional strain, and later multi-axial strains due to the release
waves.

In the experiment [3], the shock stresses were measured using
embedded manganin stress gauges at two locations inside the target.
The measured stress history is influenced by the various shock/release
waves: elastic-plastic shock waves, release waves from the edges of the
projectile-target, and release and fracture waves due to ceramic
fracturing. Therefore, the modeling of a ballistic experiment under such
complex wave interactions is useful in the ceramic model validation.
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The Ceramic Model

Conventionally, the impact behavior of a material is described
through a strength model and an equation of state. The strength model
describes the variation of strength with respect to strain rate,
temperature, and pressure. The strength is expressed through the von
Mises stress, 3 where T2 is the second invariant of the stress
deviators. Therefore, the strength model involves the calculation of the
deviatoric part (s1j) of the stress tensor a•j. The bulk (volumetric)
behavior of the material is described by the equation of state. This
involves the calculation of the pressure (mean stress) part of the stress
tensor.

Constitutive Relationships

The total strain is decomposed into elastic and plastic strains as,

S, (1)

where the elastic strain consists of the elastic strain of the intact matrix
material (e'. ) , and the strain due to crack opening/sliding (es ),

e m C(2)

Since the strain components due to microcracking are elastic, these
strains are completely recoverable upon unloading. The plastic strains
are calculated from viscoplastic flow equations. When voids (pores)
present in the ceramic, the strain components due to pore collapse are
assumed to be permanent and are calculated from Gurson's pressure
dependent plastic flow equations [4]. The constitutive relationships for
the microcracked material are given as follows:

F# = Mil (7) 6eJ (3)

The elements of the stiffness matrix Mijkl is based on the derivation of
Margolin [5,6]. MijkI is described in details by Rajendran [1,2]. The
elements of this stiffness matrix is degraded with respect to a crack
density parameter, y , which is defined in a later section.
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The total stress is decomposed into deviatoric stress and

pressure components:

OQ = S# + P$,# (4)

The elastic stress-strain relationship between the deviatoric stresses and
the corresponding deviatoric strains is given by,

Sij = 2 G (e -eT ) (5)

where, ei, are the total deviatoric strains, eiP are the deviatoric plastic
strains, and G (=Rg¢) is the degraded shear modulus due to
microcracking and pores. G is the microcrack degraded shear modulus
and Rg is the Mackenzie's shear modulus correction factor [7] for
porosity. The equation of state is described by the following modified
Mie-Gruneisen relationship,

P = Rk IPH(1 -0.5Fg) + Fpo(I-Io)] (6)

where,

(7)

la (1= . - v ) is the elastic volume compressibility (strain) and , 21,Vo
and 0 3 are the empirical parameters. K is the effective bulk modulus
of the microcracked material. F is the Mie-Gruneisen parameter, p0 is
the material's initial density, _ois the initial value of internal energy, and .7
is the current internal energy.

The Mackenzie's correction factor Rk is given in References 7
and 8. RkK is the degraded bulk modulus due to pores and
microcracks. In the absence of voids and microcracks, Equation 6
reduces to the Mie-Gruneisen equation of state for the undamaged,
flawless material.
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Definition of Damage

In the ceramic model, microcrack damage is measured in terms
of a dimensionless microcrack density y, where,

y= No am, (8)

N* is the average number of microflaws per unit volume in the ceramic
which is a model constant. amax is the maximum microcrack size which
is treated as an internal state variable. Microcrack extends when the
stress state satisfies the Griffith's criterion [9].

As the microcracks extend, y increases and the stresses relax.
In the model, No is assumed to be constant. Therefore, the increase
in y is due to increase in the crack size. The microcracks are assumed
to exist prior to any loading. Therefore, the initial crack density Y., is
determined from the relationship (8) using the values for the two
material constants: No* and ao (initial value of am). The microdamage
(microcrack size) will not increase until the generalized Griffith criterion
(Margolin [10] and Dienes [11]) is satisfied either under shear or under
tensile loading. Note that the shear loading could occur under both
tensile and compressive pressures. The microdamage rate is zero until
the applied strain energy release rate G, exceeds a critical value Gc.

Damage Growth Model

The damage evolution equation is derived from fracture
mechanics based relationship for a single crack propagation under
dynamic loading conditions. An evolution law for the state variable amax
is described through a strain energy release based microcrack growth
rate law of the form

imax (9)
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Note that amax = 0, when G, < GC. CR is the Rayleigh wave speed, Gc
is the critical strain energy release for microcrack growth, and GI is the
applied strain energy release. The model constants n1 and n 2 can be
used to limit the microcrack growth rate. n, and n2 are damage growth
constants. Since the crack growth based damage rates are different
under tensile and compressive loadings, these constants will be
assigned different values.

When the crack density reaches a critical value of 0.75 (see
reference 1), the model assumes that the microcracks have coalesced,
leading to pulverization of the ceramic. Henceforth, the material has no
strength in tension, and its compressive strength follows a Mohr-
Coulomb law, as in

Y=a•p+ fp P (10)

where Y is strength, P is compressive pressure, and a(= 0) and
fP ( = 1.0) are model constants for the pulverized material.

Model Parameters Determination

There are six constants in the ceramic model to describe the

microcracking behavior: Kxc, p., No, ao, n1 , n2 . The preliminary set of
the model constants is determined from split Hopkinson bar (SHB) and
plate impact experimental data. The constants p and a. were
calibrated to reproduce the static and SHB compressive strength data.

To assure generality of the model constants, manganin gauge
measured stress data from the bar-on-bar impact experimental
configuration was also considered. The best suitable values for the
constants are obtained based on the model's ability to reproduce the
experimental data from SHB, plate impact, and bar-on-bar impact
configurations. Rajendran [1] and Rajendran and Grove [12] reported
this model determination scheme and determined the model constants
for AD85 ceramic. The corresponding constants are given in Table 1.

The value for K,, is obtained from fracture mechanics hand
books. With lack of any microscopic measurements, a large value for
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the number of flaws in the ceramics No has been arbitrarily assumed.
Therefore, the initial estimates for the crack growth indices n1 andn 2
were calibrated to reproduce the stress profile measurements in a bar
(uniaxial stress state) and in a plate (one dimensional strain state).
n• is set to one for AD85 ceramic.

Table 1. Model Constants for AD85 Ceramic

Symbol Value Description

K1 c 3 MPa/-m static fracture toughness

p. 0.72 Coefficient of friction

N.* 1.83 x1010 m-3 Microcrack density (numbers/volume)

ao 58 x 10-6 m Initial microcrack size

n2 0.07 Crack growth rate power index

n+ 1.0 Tensile crack growth rate index

ni 0.1 Compressive crack growth rate index

The crack propagation speed under shear modes is relatively
lower than under mode I and therefore, a value of 0.1 is assumed
arbitrarily for n.-. For n2 , a value of 0.07 was determined based on the
model's ability to reproduce the rod-on-rod experimental data. The
model parameters estimation scheme requires a trial and error basis of
adjusting the crack growth indices between different experimental
configurations. Unfortunately, there is no one set of unique values for
the impact damage model parameters. At the best, a best suitable set
of values can be successfully determined through a trial and error basis
of reproducing a varieties of experimental configurations.

Modeling the Ballistic Impact Pressure
Measurements

Vincent and Chang [3] conducted instrumented ballistic
experiments on ceramic targets. A schematic of the target configuration
is shown in Figure 1. Two manganin gauges were embedded into the
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target assembly: the first (top) gauge is placed between the front
ceramic and the isodamp, and the second (bottom) gauge is placed
between the back face of the isodamp and the second ceramic. This
second ceramic is backed by a thick aluminum plate. The top gauge
measurements seemed to be valid only for a very short time (< 2
microseconds). The ceramic material that surrounding this top gauge
is destroyed by the cracked ceramic. However, the bottom gauge
survived during the measuring period (about 8 to 10 microseconds).
This gauge is protected by the intact second ceramic and isodamp.
However, the bottom gauge is also destroyed eventually. Unfortunately,
from these destructive tests, it is not possible to determine the timings
of events such as the onset of microcracking or growth of macrocracks.
Therefore, the different events which might occur inside the target during
the projectile penetration can indirectly only be related to the various
features of the stress gauge signal. The data from the two gauges are
shown in Figure 2. The pulse duration and amplitudes are sensitive to
the shock response of the ceramics, isodamp, and projectile.

STEEL

GAUGE# 1 (TOP).,, AD85 CERAMIC

o AD85 CERAMIC GAUGE# 2 (BOTTOM)a,

ALUMINUM

Figure 1. A Schematic of the Instrumented Ballistic Experiment.
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Figure 2. Manganin Gauge Measured Stress Histories in a Ballistic

Experiment.

Simulation Results and Analyses

The steel and aluminum were respectively modeled using the
HY100 steel and 2024-T351 aluminum models in the 1986 version
EPIC-2 library [13]. The isodamp was modeled as an elastic-perfectly
plastic solid with a dynamic yield strength of 0.4 GPa.

Table 2. Material constants for isodamp and AD85 ceramic

Material Constants AD85 Isodamp

Density (gm/cm3) 3.42 1.29

Shear Modulus (GPa) 108 0.5

P, (GPa) 188 3.9

P 2 (GPa) 188 16.3

P3 (GPa) 0 42.0

P 1.0 0.738
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The material density, shear modulus, and EOS constants for
isodamp and AD85 ceramics are given in Table 2. To understand the
effects of various deformation processes in the ceramic material on the
calculated stress histories (at the gauge locations), a number of
simulations of the ballistic experiment were performed. For this
purpose, the following cases were considered: 1) elastic, 2) elastic-
plastic (Case EP), 3) elastic-cracking (Case EC), and 4) elastic-plastic-
cracking (Case EPC).

These various cases were simulated by properly adjusting the
model parameters. For instance, the cracking is eliminated by setting
the initial crack size a. to zero. The plastic flow is eliminated by setting
the strength model constant c1 to a large number. To suppress plastic
pore collapse, the void content, fo is set to zero.

Grid and Time Step

The EPIC-2 simulation of the ballistic experiment idealized the
projectile-target configuration as an axi-symmetric geometry. In Figure
3, the calculated stress histories at the bottom gauge location are
compared for two different meshes.

FINE MESH
--- COARSE MESH

"N~ 408

20

3 5 7
TIME (MICROSECONDS)

Figure 3. Effects of Mesh on Stress History.
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A slight mesh effect on the stress histories can be seen from the
plot. However, the overall shape and stress levels for the two meshes
were practically the same. The element size for the ceramic in the
coarse mesh was twice the element size for the isodamp.

In the EPIC code, one of the parameters that controls the time
step size is the "ssf" parameter. The time step can be controlled by
setting values between 0.1 and 0.9 for ssf. It is also possible to
examine the time step effects through a parameter which controls the
maximum allowable time step. The results for the ssf = 0.1 (small time
step) and 0.9 (large time step) are compared in Figure 4. The stress-
time histories are similar, except for some minor stress oscillations.
These results provide sufficient confidence in the numerical results.
One of several other code parameters, such as the maximum allowable
time step, can also influence the numerical results; however, the proper
choice of these time step related code parameters produce similar and
repeatable results.

6e-

--- SMALL TIME STEP
LARGE TIME STEP

0 2 4 6 8 l
TIME (MICROSECONDS)

Figure 4. Effects of Time Step on Stress History.
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Elastic (Case E)

The simplest stress-strain relationship is the Hooke's law for
an elastic material. Since ceramic is a brittle solid, it is proper to
begin the analysis with an elastic description. The inelastic strains
due to both microcracking and plastic flows were suppressed in the
elastic simulation. Therefore, the shear and bulk moduli were not
degraded and the ceramic remained intact under impact loading. The
strength of the ceramic was unlimited. Therefore, failure was not
allowed in the elastic case.

The results from this case is presented in Figure 5. The
bottom stress gauge signal is compared with the simulation in Figure
5. As can be seen from this figure, the calculated stress levels are
higher and the loading duration is lower when compared to the data.
These results clearly indicate that a simple elastic assumption is
inadequate for describing the complex impact behavior of ceramics.

100-

ELASTIC (CASE E)
SBOTTOM GAUGE

I'

640

i20

20

.. . . . ., .\

1 3 5 7

TIME (MICROSECONDS)

Figure 5. A Comparison Between Bottom Gauge Data and Case E.

The Ceramic Behavior is Assumed Elastic.
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Elastic-Plastic (Case EP)

In the elastic-plastic simulation, the impact behavior of
ceramic was described through the strain rate dependent strength. An
initial value of zero for the microcrack size eliminates microcracking in
the calculation. The initial porosity was also set to zero, so that pore
collapse would not occur.

60*
BOTTOM GAUGE

"--- ELASTIC-PLASTIC
(CASE EP)

I40

"" A

TIME (MICROSECONDS)

Figure 6. A Comparison Between Bottom Gauge Data and Case EP.
The Ceramic Behavior is Assumed Elastic-Plastic (No Cracking).

When the ceramic behavior is described by an elastic-plastic
model, the model comparison with the bottom gauge data improved
significantly as shown in Figure 6. It appears that limiting the ceramic
compressive strength to finite values through a yield surface could
improve the model prediction. With lack of any microstructural evidence
to prove macroplastic flows in the brittle ceramic under impact loading
conditions, it is premature to conclude that AD85 ceramic deforms
plastically like a metal just because the elastic-plastic model reproduced
the experimental measurements. There is also a possibility to cap or
limit the ceramic strength due to microcracking and crushing. Though
the matching is good, the absence of certain salient features in the
simulation indicates elastic-plastic idealization alone may not reproduce
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all the features. It appears that the matching between the simulation
and experiment can be significantly improved by limiting the ceramic
strength to finite values.

Elastic-Cracking (Case EC)

This case examines the effect of microcracking on the stress
profile. In the simulation, a very large value was assumed for the
strength to eliminate the plastic flow. The strength was affected by the
elastic moduli degradation and was allowed to relax through
microcracking only. The pore collapsing was also suppressed in the
simulation.

" --- ZLASTZC-CRACKING (CASE IC)
- BOTMM VAUGE

'1

" A

4120
0 1 . .. . . .. . . .. . .

TIME (MICROSECONDS)

Figure 7. A Comparison Between Bottom Gauge Data and Case EC.
The Ceramic Behavior is Assumed Elastic-Cracking (No Plastic Flow).

Figure 7 compares the calculated stress history from the Elastic-
Cracking case and the bottom gauge data. The two stress peaks (at
points A and C) were present as in Cases E and EP. The stress levels
are instantaneously higher compared to the gauge data. The stress
history during loading and unloading matched with the data some what
in an average manner. The results from the Case EP (elastic-plastic)
compared with the data relatively better than this elastic-cracking case.
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The Full Ceramic Model (Case EPC)

To further investigate the effects of inelastic deformations on the
stress history, the elastic-plastic-cracking case with pore collapse was
considered. In other words, the full features of the ceramic model were
used to describe the impact behavior of AD85 under Case EPC.

The ballistic impact experiment of Vincent and Chang [3] was
simulated using the ceramic model constants in Table 1. A 10 percent
porosity content and an initial flaw size of 0.058 mm were used in the
simulation. Figure 8 compares the model and the bottom gauge data.

60-

n(TENSION) = 1.0
--- BOTTOM GAUGE DATA

M -

TIME (MICROSECONDS)

Figure 8. A Comparison Between The Ceramic Model (With Tensile
ni = 1) and Bottom Gauge Data.

The model showed lower stress level and slightly a higher pulse
duration compared to the data. The damage levels with respect to time
and position indicated an excessive tensile damage in the top ceramic
layer. An examination of the damage contours showed emanation of
Herzian cracks and fracture conoid. Several regions of the top ceramic
plate had pulverized. Since the ceramic model degraded the strength
and stiffness due to microcracking, the microcrack-induced damage
respectively lowered the stress level and increased the pulse duration.
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To reduce the tensile damage, the tensile crack growth factor n'
was reduced to a value of 0.1 and the simulation was repeated. In fact,
a sensitivity study based on values between 0.1 and 0.5 showed very
similar stress profiles. The computed stress history at the bottom gauge
location is compared with the data in Figure 9. The model reproduced
the experimental data extremely well.

60

CERAMIC-MODEL
BOTTOM GAUGE DATA

"• 40- X

0420-

I
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Figure 9. A Comparison Between the Ceramic Model (With Tensile
n1=0.1) and Bottom Gauge Data.

The model prediction significantly improved for n1 values
between 0.1 and 0.5. Since this parameter indirectly controls the
amount of stress relaxation in the model, a reduced value for this
parameter accordingly increased the calculated stress amplitude. These
results indicate that the model prediction based on both brittle
microcracking and plastic flow matched the experimental measurements
extremely well. The ceramic model not only matched the stress
amplitude and the time duration, it also reproduced most of the salient
features of the measured stress signal.
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Summary

Recently, Rajendran [1,2] reported the development of an
advanced ceramic model. This ceramic model has been implemented
into the 86 version of the EPIC-2 code and successfully used to model
the impact behavior of AD85 ceramic under different impact test
configurations, such as the plane plate impact and rod-on-rod tests.
The stress-strain states under these two configurations are fairly simple.
In the plate impact test, the strain is one dimensional and in the rod-on-
rod test the stress is one dimensional. There are seven model
constants: K,,, p., No*, a0 , n-, n-, n2. The fracture toughness value is
taken from fracture mechanics hand books. The rest of the constants
were determined from the experimental data. For this purpose, the
manganin gauge measured stress histories from the plate impact and
rod-on-rod impact experiments were employed.

The present work demonstrated the applicability and generality
of the ceramic model under relatively complex stress-strain states. The
idea is to employ the AD85 constants, determined from the plate impact
and rod-on-rod impact tests data, to successfully describe the AD85
ceramic behavior under an entirely different experimental configuration.
The three dimensional stress-strain state under this target configuration
is fairly complex due to shock wave interactions. The calculated stress
history matched the measured stress history data extremely well. When
a value of 1 was employed for n', the ceramic exhibited extensive
damage and the simulated stress profile did not match with the
experiment; however a value of 0.1 for n' predicted the data
successfully. In summary, the ceramic model constants, estimated from
the standard one dimensional impact tests data, reproduced the multi-
axial experimental data well.

References

1. Rajendran, A.M., "High Strain Rate Behavior of Metals,
Ceramics, and Concrete," WL-TR-92-4006, Air Force Report,
Wright-Patterson Air Force Base, Ohio 45433-6533, April 1992.

2. Rajendran, A.M., "Modeling the Impact Behavior of AD85
Ceramic Under Multi-Axial Loading," ARL-TR-137, May 1993.

230



3. Vincent, P.M. and Chang A.L., "Ballistic Impact Pressure Pulse
Measurement," 41 st Meeting of Aeroballistic Range Association,
Oct 22-25, 1990.

4. Gurson, A.L., "Porous Rigid-Plastic Materials Containing
Rigid Inclusions - Yield Function, Plastic Potential, and Void
Nucleation," Adv. Res. Strength Fract. Matls., 2a, Tablin,
D.M.R., ed., Pergamon Press, NY, 1977.

5. Margolin, L.G., "Elastic Moduli of a Cracked Body," Int.
Journal of Fracture, 22, pp. 65-79, 1983.

6. Margolin, L. G., "Microphysical Models for Inelastic Material
Response," International Journal of Engineering Science, 8-10,
22, 1171-1179, 1984.

7. Mackenzie, J. H.,"The Elastic Contents of a Solid Containing
Spherical Holes," Proc. Phys. Soc., 2, 63, 1950.

8. Johnson, J.N., "Dynamic Fracture and Spallation in Ductile
Solids," J. Appl. Phys., 52 (4), p. 2812, 1981.

9. Griffith, A. A., "The Phenomena of Rupture and Flow in
Solids," Phil. Trans. of Royal Soc. of London, 221, 163-198,
1920.

10. Margolin, L.G., "A Generalized Griffith Criterion for Crack
Propagation," Engineering Fracture Mechanics, Vol. 19 Vol. 30,
pp. 539-543, 1984.

11. Dienes, J. K., "Comments on 'A Generalized Griffith Criterion
for Crack Propagation,' by L. G. Margolin" - a Technical Note,
Eng. Fracture Mechanics, 3, 2, 615-617, 1986.

12. Rajendran, A.M., and Grove, D.J., "Modeling The Impact
Behavior of AD85," 24th Int. SAMPE Tech. Conf. Proceedings,
Allied-Signal Inc., Publishers, Oct 1992.

13. Johnson, G. R. and Stryk, R. A., "User Instructions for the
EPIC-2 Code," AFATL-TR-86-51, Eglin Air Force Base, Fl, 1986.

231



Dynamic Impact and Penetration of
Thick Composite Laminate

C. T Sun and S. V Potti
Purdue University

"PAPER NOT AVAILABLE"

233



Axisymmetric Penetration of Thermoviscoplastic Targets

Dr. R. C. Batra*, Dr. Xingju Chen, and Mr. Z. Peng
Department of Mechanical and Aerospace Engineering

and Engineering Mechanics
University of Missouri-Rolla

Rolla, MO 65401-0249 USA

ABSTRACT

Axisymmetric deep penetration of a strain- and strain-rate
hardening but thermally softening target by a fast moving hemispherical
nosed rigid rod has been analyzed numerically by using the finite
element method. The finite element mesh is refined adaptively whenever
one of its elements has been severely distorted. Sixteen tests of
Forrestal et aL involving the penetration of steel rods of radii 2.54 mm
and 3.555 mm into aluminum targets have been simulated. The
computed depth of penetration is found to correlate well with the test
findings.

The perforation of a thermoviscoplastic plate by a rigid flat-nosed
cylindrical projectile has also been studied. It is found that a shear band
forms near the target/penetrator interface.

INTRODUCTION AND GOVERNING EQUATIONS

We refer the reader to the review articles by Backman and
Goldsmith [1], Jonas and Zukas [2], and Anderson and Bodner [3] for
a description of the different physical mechanisms involved in the
penetration and perforation processes, and a discussion of a number of
engineering models. The recent book [4], edited by Zukas, provides
extensive discussions of engineering models, experimental techniques,
analytical models, and numerical simulation of perforation. Different
computer codes used to study the penetration problem, and their
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relative advantages and disadvantages have been surveyed by Zukas
[4].

Here we study an axisymmetric penetration problem in which a
rigid cylindrical hemispherical-nosed penetrator impacts a deformable
target at normal incidence. We use a fixed set of cylindrical coordinates
with z-axis coincident with the axis of symmetry of deformations and
pointing into the target and the origin at the top surface of the
undeformed target. We employ the Lagrangian or the referential
description of motion to study the thermomechanical deformations of the
target. The balance laws of mass, linear momentum, and internal
energy are supplemented by the following constitutive relations.

-p(p,e) + 21i_, T = P (1,2)
P

21. o (1 + b1)m(1 - v6), (3)

1

2D= grady + (gradv)T , 5 = D - l(trD)l, 212 = tr(b), (3 _ ) (4,5,6)

2rp ~P0o Co
P = PH (1 - ) + p (e - eo), PH- (1 c0 )2 (7,8)
P12 (1P- S=I) 2

1 --- , I =- 1, Q -k-O gradO(F-I)T, (9,10,11)
P PO P

C: 6 + ýp/p2, tr(•) (12,13)P0  p

Here a is the Cauchy stress tensor, T the first Piola-Kirchhoff stress
tensor, o'o the yield stress of the targef-material in a quasistatic simple
tension or compression test, qO the strain at yield, n the strain-hardening
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exponent, m the strain-rate hardening coefficient, v the coefficient of
thermal softening, G the temperature rise of a material particle, p the
present mass density of a material particle whose mass density in the
reference configuration is po, e the specific internal energy, k the thermal
conductivity, and c the specific heat. The internal variable ( may be
associated with an equivalent plastic strain; its evolution is given by
equation (13). Equation (7) is the Mie-Gruniesen equation of state. The
material parameters n, b, m, F, p, co, s, k, and c are taken to be
independent of the temperature.

We assume that the target is initially at rest, is stress-free, has a
uniform mass density p0 and a uniform temperature 00. The initial
velocity of the rigid penetrator is vo in the positive z-direction, and at time
t = 0 it just impacts the top surface of the target at normal incidence.

For boundary conditions we take the target/penetrator interface
to be smooth and neglect the heat transfer between the two, take all
bounding surfaces of the target to be traction free, and regard them
except the top one, where convective heat transfer between it and the
surroundings is considered, to be thermally insulated. Due to the
axisymmetric nature of deformations, boundary conditions following from
the symmetry of deformations are applied on the axis of symmetry.

NUMERICAL SOLUTION AND RESULTS

We use the updated Lagrangian formulation [5] of the problem to
get its approximate solution. In the solution of the problem by the finite
element method we employ the lumped mass matrix obtained by the
row-sum technique, and use three quadrature points to numerically
integrate various quantities over an element. The coupled nonlinear
ordinary differential equations obtained by the Galerkin method are
integrated with respect to time t by using the forward difference method.
The time step used is small enough to satisfy the Courant condition and
restrictions imposed on it by the slideline algorithm employed to account
for the contact conditions at the target/penetrator interface.

After every time increment, the coordinates of node points are
updated and elements in the finite element mesh are checked for
excessive distortion. If either one of the interior angles of a triangular
element is less than 150 or the ratio of its altitude to the base is less
than 0.12, then the element is considered to have been severely
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distorted, and the mesh is refined so that finer elements are generated
in the region adjoining the target/penetrator interface and the element
size increases gradually as one moves away from this surface. The
values of the nodal variables at the newly generated nodes are obtained
by first determining to which element in the old mesh the node belongs,
and then by interpolating from the values at the nodes of that element.
Additional information regarding the mesh refinement and the slideline
algorithm may be found in Ref. [6].

RESULTS FORTHE DEEP PENETRATION OF ALUMINUM TARGETS

We assign following values to material parameters for the 6061-
T651 aluminum targets used in the ballistic experiments of Forrestal et
al. [7].

00 = 276 MPa, n = 0.051 +o = 0.004,

b = 10000 sec, m = 0.01 , v =0.00153/1C,

p0 = 2710 kg/m 3 , co = 5041 ms- , s = 1.420 (14)

r =2.0, k =120 Wm-1°C-1,

c =875Jkg-1 oc-1, Oa 22°C, h =20Wm-2 C-1

For these values of material parameters the stress-strain curve in a
quasistatic compression test mimics well that given by Forrestal et al.
Here 0a denotes the ambient temperature and h the heat transfer
coefficient between the top surface of the target and the surroundings.

In the ballistic experiments of Forrestal et al., a 20-mm smooth-
bore powder gun launched T-200 maraging steel hemispherical nosed
cylindrical rods impacting 6061-T651 aluminum targets at normal
incidence. They observed that the major penetration mechanism was
ductile hole growth, and their post-test observations revealed that
penetrators remained essentially undeformed. Thus, it is reasonable to
regard the penetrator as a rigid body, and our model should simulate
well their tests.
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Preliminary computations for a few test conditions indicated that
a thin layer of the target material adjoining the target/penetrator interface
melted before the penetration process was completed. According to our
constitutive hypotheses (1) and (3), when 0 = 1/u = melting
temperature of the material, /i = 0, and the material behaves like an
ideal fluid and cannot support any shear stresses. To alleviate this
problem, for 0 > 0.955 Om, equation (3) was modified to

2 - (1 + bl) m ,

F3- I ** 'o()

where 0m is the melting temperature of the target material.

Figure 1 provides a comparison of the computed depth of
penetration with that found experimentally for a penetrator of radius
3.555 mm. Similar results were obtained for a penetrator of radius 2.54
mm. The curve depicts the computed penetration depth normalized by
the penetrator length versus the impact speed and reveals that the
computed penetration depth matches well with that found experimentally
for low impact speeds but the two differ for higher values of the impact
speed. The discrepancy between the two sets of results for high striking
speeds could be due to frictional forces at the target/penetrator interface
and the dependence of parameters for the target material upon the
temperature. Dynamic effects such as recovery and recrystallization
have also been neglected. We note that the test data for the range of
temperatures, strains and strain-rates encountered in a typical
penetration process is not available in the open literature. Also, in the
tests and hence in our simulations, the target length equalled four to five
times the penetration depth for low impact speeds and only twice the
penetration depth for higher speeds. Thus, support conditions at the
back surface may affect more the penetration depth at high impact
speeds than at low speeds. We took the back surface to be traction
free in every case.

In Figures 2a and 2b we have plotted contours of the temperature
rise and the hydrostatic pressure in the deforming target region when
the penetrator has been slowed down to 39.5% of its initial impact speed
of 1.009 km/s. The temperature rise at a material point is indicative of
the accumulated plastic deformation there. The nondimensional
temperature is to be multiplied by 116.4°C to obtain the corresponding
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dimensional value. These temperature contours suggest that the
temperature of target particles adjoining the target/penetrator interface
has reached close to the melting temperature of the material, and only
a thin layer of the target material has undergone severe plastic
deformations. This explains at least partially the observation reported by
Forrestal et aL that a thin layer of the target material normal to the
target/penetrator interface underwent microstructural changes. From
the spacing between the contours of the temperature rise one can
estimate the temperature gradient along the normal to the contours.
The temperature gradient at points on the target/penetrator interface
and perpendicular to it is quite sharp at points in the vicinity of the
penetrator nose and drops off significantly as one moves away from the
penetrator nose.

The contours of the hydrostatic pressure scaled by oa indicate
that peak values in excess of 9 ao occur in a small region around the
penetrator nose tip. Along any radial line the pressure drops off rapidly
at target particles near the penetrator nose, and the rate of drop of the
pressure decreases slowly as one moves away from the penetrator
nose. We note that immediately after the impact the peak hydrostatic
pressure near the nose tip exceeded 30 ao.

RESULTS FOR THE PENETRATION OF RHA STEEL PLATES

We now study penetration of long rigid cylindrical rods 6 mm in
diameter into 12 mm thick rolled homogeneous armor (RHA) steel
circular plates 36 mm in diameter and supported at the back surface by
rigid annular supports with an inner diameter of 24 mm. The bounding
surfaces of the plate except those in contact with the penetrator and the
back support are taken to be traction free and thermally insulated. Also
all contact surfaces are taken to be smooth, and boundary conditions
of no inter-penetration of the plate material into the penetrator and vice-
a-versa are applied at all contacting surfaces. It is assumed that the
penetrator speed vo stays constant which will be approximately valid for
a long penetrator. Constitutive relations (3) and (7) are replaced by

2fi = CFO (1 + B •n I) (1 - vO), p =KIt,

and we assigned following values to different parameters in order to
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compute results.

O = 1500 MPa, p0 = 7800 kg/m 3 , c = 477 J/kg°C, v0 = 25 m/s.

K = 302 GPa, B = 0.016, v = 6.67 X 10-4/oC, k = 38 W/m°C.

For a flat nosed penetrator, Figures 3 and 4 depict in the
deformed shape of the plate, the distribution of the velocity field at times
t = 48 ps and 288 ps after impact, and contours of the temperature rise
at t = 432 ps. It is clear that the temperature rise at plate particles
adjoining the periphery of the penetrator nose is quite high and
significant temperature rise occurs in a narrow region encompassing the
newly generated plate surface and extending towards the back surface
of the plate. Recalling that the heat generated is because of the plastic
deformations of material, one can conclude from the contours of the
temperature rise that a narrow annular region of the plate is intensely
deformed. It is confirmed by the plots at different times and given in Fig.
5 of the second invariant of the strain-rate tensor at particles situated on
a radial line coincident with the flat penetrator nose. The velocity
distribution (cf. Fig. 3) in the deforming plate region suggests that for t
>_ 192 ps, the plate material directly ahead of the flat surface of the
penetrator nose moves essentially as a rigid body and is being sheared
from the remainder of the plate which is essentially at rest. Even though
the mesh was adaptively refined with finer mesh generated in the
severely deforming region and coarser elements elsewhere, one can not
estimate accurately the width of the shearing layer or equivalently the
band-width.

CONCLUSIONS

We have studied the deep penetration of aluminum targets by fast
moving steel rods, and the penetration of RHA steel plates by long rigid
rods. In each case, the target/penetrator interface is taken to be
smooth and the target material to exhibit strain-rate hardening and
thermal softening. For the penetration of aluminum targets by steel
rods, the computed depth of penetration is found to match well with that
determined experimentally by Forrestal et a/. For the penetration of steel
plates, the material ahead of the flat surface of the penetrator nose is
found to move rigidly with the velocity of the penetrator and is sheared
from the remainder of the plate which is essentially undeformed. Most
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severe deformations of the plate material occur in a narrow region
adjoining the interface between the plate and the mantle of the rigid
penetrator.
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Abstract

We conducted perforation experiments with 4340 steel, rod
projectiles and HY-100 steel, target plates at striking velocities
between 80 and 370 m/s. Projectiles were machined to nominally 30-
mm-diameter and 281-mm-length so they could be launched from a
30-mm-powder gun without sabots. The target plates were rigidly
clamped at a 305-mm diameter and had a nominal thickness of 10.2
mm. In addition to measuring striking and residual projectile velocities,
we obtained back surface framing camera data that showed clearly the
plate deformation and plug ejection process. An Imacon 792 camera
provided up to 20 frames per experiment with an interframe time
duration of 10 gs. Our modeling work is in progress, but we present a
beam model that exhibits the features observed in the experiments.

Introduction

We conducted a series of perforation experiments to investigate
the ballistic performance of HY-1 00 steel plates. The experiments were
instrumented with diagnostics that provided striking velocity, impact
time, and residual velocity. In addition, an Imacon 792 camera
photographed the rear surface deformation and plug ejection of the
plate. At this time, we have not completed the analytical model for the
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plate deformation (bending) and plug ejection (shear localization), but
we present a beam model that contains these observed features.

Perforation Experiments

We performed a set of perforation experiments with 4340 steel
rod projectiles that impacted 10.4-mm-thick HY-100 steel (MIL-S-
16216J-AM#I) plate targets at normal incidence. The rods were
machined to fit in a 30-mm-diameter powder gun and launched without
sabots. The rods had nominal 281-mm-length and 1.58-kg-mass.

Several machining steps were performed on the plates in
preparation for testing. The plates were blanchard ground on both
surfaces to provide a smooth, slag-free, flat surface. Eight equally
spaced 22.2-mm-diameter holes were drilled on a 381-mm-diameter
bolt circle to allow the plates to be sandwiched between, and bolted to,
the test fixtures. The plates were installed with a clamping system that
had an inner clamp diameter of 305mm.

We varied the striking velocity, Vs, between 78m/s and 370m/s.
Table 1 shows the shot parameters and test results for the 10.4-mm-
thick HY-1 00 plates. Figute 1 shows that this range of striking velocities
determined accurately the ballistic limit velocity VbI and the residual rod
velocities Vr.

Table 1: Shot parameters.

Shot # Mpr(kg) h(mm) Vs(m/s) Vr(m/s) VD(m/s) 0(mm) M 1(kg)
1-0149 1.594 10.5 78 0 0 0 0.000
1-0179 1.558 10.5 82 0 0 0 0.000
1-0194 1.559 10.5 105 0 0 0 0.000
1-0196 1.557 10.5 114 0 0 0 0.000
1-0195 1.558 10.4 125 80 80 30.5 0.054
1-0176 1.557 10.5 126 84 104 30.5 0.055
1-0148 1.583 10.5 127 98 112 30.3 0.056
1-0147 1.583 10.2 162 142 164 30.5 0.056
1-0178 1.556 10.5 163 138 163 30.7 0.057
1-0175 1.556 10.4 165 141 163 30.7 0.057
1-0191 1.558 10.5 207 168 210 31.1 0.059
1-0146 1.582 10.5 258 232 268 31.2 0.066
1-0192 1.558 10.4 261 233 269 31.8 0.064
1-0177 1.559 10.5 263 234 273 31.8 0.065
1-0180 1.559 10.5 318 284 335 32.6 0.063
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11-01931 1.557 10.5 322 289 335 32.6 0.067
1-0145 1.582 10.2 370 333 389 33.1 0.062
h = plate thickness, Vs = striking velocity, Vr = rod residual velocity,
Vp = plug residual velocity, 0 = hole diameter, Mpr = projectile mass,
Mpm = plug mass after perforation.
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Figure 1: Rod striking velocity versus rod residual velocity data.

Striking velocity was determined by the rod interrupting two
continuously monitored laser beams during free-flight prior to striking
the plate. Impact time was measured by a time-of-arrival gage
cemented to the front surface of the plate. The signal from the time-of-
arrival gage triggerred the Imacon 792 camera that monitored the rear
surface of the plate. The first frame in Figures 2 and 3 is at 5gsec from
impact with all subsequent frames at 10gsec intervals. Figures 2 and 3
show the rear surface deformation recorded by the Imacon camera for
shots 1-0191 (Vs=207 m/s) and 1-0193 (Vs=322 m/s) respectively. A
fiduciary length was placed behind the rear surface of the plate to
provide a known length scale. The photographs show the early time
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plate deformation and late time plug ejection. We also see a cloud of
material forming just after plug ejection. We believe this to be a
combination of the time-of-arrival gage and compressed air that are
trapped between the rod and the plate at the time of impact.

Residual velocity was determined by the plug and rod
combination exiting the rear surface of the plate and interrupting two
continuously monitored laser beams during free-flight.

Figure 2: Dynamic deformation of rear surface of plate showing

bending and plug ejection; Vs=207 m/s.
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Figure 3: Dynamic deformation of rear surface of plate showing

bending and plug ejection; Vs=322 m/s.
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Beam Model

The photographs in Figures 2 and 3 led us to conclude that the
major mechanisms for plate perforation are plate bending and shear
localization. To start our modeling, we consider the simpler beam
perforation problem. We start with the rigid plastic beam analysis
presented by Jones [1] and Symonds [2] and extend their results to
predict ballistic limit velocity VbI and residual velocity Vr. We model an
infinitely long beam with rectangular cross-section struck by a rigid rod
(nondeforming) with rectangular cross-section. Figure 4 defines the
problem geometry.

4Vs

2a 4

Figure 4: Geometry of the problem. The rod and beam have width b
into the page.

Following the rigid plastic beam analysis of Symonds [2], we take the
velocity profiles shown in Figure 5 as

w=W0  -a!x<O , (la)

v=W 1-1_ O<x__X (lb)

S= 0 x>? . (lc)
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Figure 5: Diagram of velocity distribution.

We now write the equations of dynamics for the beam section
-X<x<X. There are fully plastic moments, Mo, at x=±+ while the shear
forces, Q0 , are zero at x=±+. The equation for lateral momentum is

(G+2am)Wo + 2J'om i( dx = , (2)

where G is the mass of the rod and m is the mass per unit length of the
beam. The equation for angular momentum of the beam section O<x<k
is

2ofo•M=J mw7x dx .(3)

The equation for the lateral momentum of the rod and plug is

(G+2am)Wo =-2Qo . (4)

We integrate these equations subject to the initial conditions
Wo(t=0)=Vs, W1(t=0)=0, W1(t=0)=0, and Wo(t=0)=0. After
some mathematical manipulations we obtain

GVst Q~t2

W(t) - G+2am G+2am '(5)

W(t) - Q°2 t2  (6)

6mM0
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6M° (7)

Qo

For a Tresca yield criterion with tension yield stress co, the plastic
bending moment and shear force are

Mo = bh22a 0 Qo- bh(7 (8a,b)

4 2

The rod perforates the beam when

Wo(tp)-Wl(tp)=h ,(9)

with residual rod velocity

Vr = Wo(tp) (10)

where tp is defined as the time of perforation.
Figures 6a,b illustrate the displacement and velocity versus time

histories for Vs=Vbl. When Vs=Vbl we satisfy the conditions for
perforation: Wo -W, = h and Wo = W1 at t=tp. If the striking velocity is

less than VbI, then the condition Wo =W 1 is reached before
Wo - W1 = h and the plate will not be perforated. For striking velocities

higher than VbI the plate will be perforated and the condition WO > W1

will hold. For all Vs > VbI, the residual rod/plug velocity is

Vr = Wo(tp) . (11)

We note that at the ballistic limit(Vs=Vbl) the residual velocity is finite.
This result is observed experimentally in Figure 1. From equations
5,6,8,and 9 the ballistic limit velocity is

Vbl2 = 21+-)2 2bhc°3 [1 ] G3mh (12)

For long rod penetrators and thin plates the term 2am/G is small
compared to unity and may be neglected. The ballistic limit velocity for
long rods and thin plates is
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Vbl2 2bh(o + 2bh2co0  (13)
3m G

Displacement

Wwo 
:h

tp time

Figure 6: (a) Displacement versus time profile for Vs=Vbl.

Velocity

Vs 0

Wi

tP time

Figure 6: (b) Velocity versus time profile for Vs=Vbl.

Summary

We conducted a series of perforation experiments with 4340
steel rod penetrators perforating HY-100 steel plates and present a
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beam model that includes bending and shear localization. The beam
model predicts a non-zero residual velocity at the ballistic limit velocity
which is in agreement with our experimental observation for plates.
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A CONCEPTUAL MODEL TO PREDICT FORCE-TIME HISTORIES
IN STEEL PLATES DUE TO PENETRATION BY TUNGSTEN RODS

AT VELOCITIES OF 1.5 TO 2.5 KM/S

S. Dhar, D.J. Grove and N.S. Brar
University of Dayton Research Institute

300 College Park
Dayton, Ohio 45469-0120

ABSTRACT

A two-dimensional analytical model has been proposed to predict
the force-time history in an isotropic plate due to penetration by a
projectile. Mathematical expressions are formulated to describe the
shape and radial expansion attributes of the local cavity during
penetration. This paper outlines the concepts of the contact zone and
cavity expansion in the target plate. Six penetration experiments were
performed in 4340 steel plates by long tungsten rods (L/D = 11) at
velocities in the range of 1.5 to 2.5 km/s. These experiments were then
simulated using the EPIC91 Research Code. From the experiments,
cavity radius, terminal velocity and reduction in rod length are compared
with the finite element simulations. The simulated cavity radius, cavity
depth, cavity expansion velocity, and force time history are compared
with that obtained from the cavity expansion model. The results are
encouraging.

Key Words: local cavity, global cavity, contact zone, cavity growth,
cavity expansion.

1.0 BACKGROUND. The penetration process has been modeled
by Tate [1,2], Hanagud and Ross [3], Awerbuch and Bodner [4] and
Ravid and Bodner [5]. The above models are one dimensional and
consider a rigid projectile, and a compressible [3] or incompressible
[1,2,4,5] target. At low striking velocities all the models sufficiently
describe the penetration and perforation parameters, even though the
modelling concepts are different. The behavior at the projectile and
target interface, where erosion occurs, is controlled by the hydrodynamic
pressure, resistance of the target, and strength of the projectile. Tate
[6] approximated the projectile strength and target resistance for a
compressible target assuming spherical cavity shape. Forrestal et al [7]
approximated the projectile strength and target resistance for a
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compressible target, and a low cavity (spherical) expansion velocity.
Rosenberg et al [8] described cylindrical cavity expansion in an infinite
medium. For a hypervelocity case these models may be conservative.

We have proposed a two-dimensional model [9] to describe the
penetration and perforation. The theoretical work is based on contact
zone and cavity expansion approximation. In the contact zone model
erosion behavior at the projectile and target interface is indirectly taken
into account by considering a thin melt layer, which is formed due to
generation of frictional heat. In the dynamic cavity expansion model, the
concepts are taken from Hanagud and Ross [3], except for the material
model.

1.1 Model Concept. To analytically calculate the loading history in
the target, the impact or penetration event is described through contact
zone and cavity expansion models [9]. The projectile is assumed to be
a flat-end cylinder (rod) that impacts a homogeneous, isotropic target
plate at normal incidence. Immediately upon impact, the projectile begins
to penetrate the target. As the penetration proceeds, the projectile's
nose remains in constant contact with the target and a cavity forms
inside the target. This contact zone defines the target's local cavity and
is schematically shown Fig. 1. In this figure (r,z,O) and (r ',z ',0) are

r
a ~A-1 '

cs• ~ ~ ---,. 8 ,•) / -0,,
Z Solid (Projectile) 4.- Liquid *-.a - * Solid (Target)

(P (PS)<

UNx

Tz"

Figure 1 Schematic Representation of Mechanics of Cavity Formation.
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the initial and moving axisymmetric coordinates. The z' coordinate
moves with the projectile nose and has velocity V, (t). At time t = 0, the
velocity V,(O) = 0; at time t = 0*, the velocity V,(O) = V,, the striking
velocity, and at time t = tf, the velocity V,(t,) = V, is the exit velocity or
the terminal velocity. The terminal value of the penetration depth z,, may
be obtained from the equation of motion for a projectile of density p and
the deforming radius R(r,z) (pp t R2(r,z) dV/dt = -F, - F, ) that is
penetrating the target material in the vertical direction. The compressive
force, F,, and the shearing or frictional force, F,., together decide the
dynamic force resisting penetration along the vertical direction.

In the hypervelocity model, we consider that a very thin melt or
vapor layer (5) is formed due to sliding friction between the projectile
surface and the cavity wall. The temperature at the wall (TJ) will vary
from melting point (Tm ) to evaporation point (T>m). The melt layer is
assumed to be incompressible. We introduce a stream function AV =
(s,n) in two dimensional flow such that V., = -F,, B y V, B. The stream line
coordinates in Fig. 1 are s and n, where s is along the contour of the
cavity and n is the normal to the tangent of the cavity surface. The
origin, 0, may be placed at an arbitrary point on the contour. The angle
between the element of the contour and the direction of the velocity V,(t)
of the penetrating projectile is denoted by O(x)(---I/2 - x/R(rz)), where x
is the distance measured along the s coordinate and R(rz) is the radius
of the deforming projectile. We make an assumption that the projectile
(0L < t < tf), is impinging at a constant velocity, V,, on a contour of the
cavity, and the points of the contour may move along it at a velocity,
U(x). In other words, keep the points on the contour in the target fixed,
and vary the points on the contour of the projectile. Now the stream
coordinate n is non-dimensionalized with the thickness of the melt layer
(A = n15). The new stream function is then represented by V = V8(xA),
where 4 represents the rate of increase in the surface area and A takes
the value from 0 (n = 0) to 1 (n = 8). At A = 0, xy = 0 and at A = 1, Nf =
xV5(x,A). The flow and temperature distribution in the melt layer are
assumed to satisfy the usual equations of motion and heat balance
based on thin-layer theory. The excess force of pressure and the
frictional force in the direction of motion yield the resistance to the
forward surface of the projectile. The forces of pressure and the
frictional forces add up in the radial direction to cause cavity expansion.
The above description defines the formation of the local cavity. During
the entire penetration event, an infinite number of these local cavities
are formed. This process can be approximated by the formation of a
finite number of cavities.
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1.2 Cavity Model Approximation. Recall that the target's local
cavity is defined as that part of the global cavity in which radial
expansion is occurring, i.e., in the immediate vicinity of the nose of the
penetrating rod. Based on Mathieu's function [10], the following function
has been has been formulated to describe the shape of these local
cavities.

af - K" _z < Z z :ýzf

a(z) = (1)

CR ~ <z 0 Z!ýZ

where the local cavity radius a(z) varies between 0 (at the base of the
cavity) and a,, the characteristic final (maximum) cavity radius. Also, z
is the local cavity depth, zf is the characteristic final (maximum) cavity
depth, CR is the Rayleigh wave speed, z,,t (V,) is the projectile/target
interface velocity (assumed constant for complete penetration), and a is
the calibration parameter. In Eqn. (1), the two expressions and their first
derivatives (with respect to z) must be equal to each other at Z, i.e., the
cavity shape function is smooth and continuous. For an arbitrary a (0
< a < 1), this condition can be satisfied by uniquely determining the
parameters K" and Z" through an iterative numerical scheme. Fig. 2
illustrates the cavity shape function for various values of 2, and aX.
Assuming that 2 = znt, the partial derivative of the shape function a(z)
with respect to time, a(z,t),t, provides the following expression for the
local cavity's radial expansion velocity:

{(zaJ(_ z 1- K*1 -,Jjft Z < z !5 z(

CR O, < 0z Z*

The radius of the cavity is typically 2-3 times the radius of the projectile.
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Figure 2 Local Cavity Shape Function for Various Values of ki, and (x: (a) -, = 0.1

mm/isec; (b) kint = 0.5 mm/lsec; (c) in, = 1.0 mm/p.sec; and, (d) in, = 2.5 mm/gsec.

2.0 EXPERIMENTAL ANALYSIS.

2.1 Description of Projectiles and Targets. The tungsten project-
iles, 0.195-in in diameter and 2.15-in long (L/D = 11 and
mass - 18.8g), were prepared from as-received tungsten alloy
rods. The tungsten alloy (WN307F, swaged and aged) had a
density of 17.67 g/cm3 (99.6% of the theoretical density) and a
Rockwell hardness (R,) of 44.6. The 4340 steel target plates, with a
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12-in nominal diameter were sliced from a 12 inch cold-rolled round
stock with thicknesses ranging from 1 to 4 inches. The hardness of
these as-received plates was about 22. Both surfaces of the plates
were turned to make them flat and parallel. The plates were
subsequently heat treated to a hardness (R, ) of about 30.

2.2 Two Stage Gas Gun Launch and Results. Projectiles were
launched using the 50/20 mm two stage gas gun at the University of
Dayton Research Institute, to velocities up to about 2.7 km/s. Projectile
velocities were measured to within 0.5% accuracy using time-of-flight
measurements between four laser-photodetector stations located along
the range center line. Preimpact yaw and pitch of the projectile were
measured with an orthogonal set of flash x-rays triggered by a delayed
pulse from the laser beam. Penetrator exit velocity and residual length
were monitored by a second set of orthogonal flash x-rays mounted
behind the target plate.

Table 1 summarizes the data on impact velocity, preimpact
penetrator inclination, and residual velocity and length of the penetrator
from the six experiments. Photographs of the penetrator, target
configuration, residual length of the penetrator, and of the front and rear
surfaces of the shot target plates are shown in Fig. 3. The target plates
were then cut parallel to the hole made by the penetrator during the
penetration process to expose the cavity outline. The surface area near
the cavity was milled to clean up the saw cut marks. Photographs of
the cavity profile from shot 4-1529 are shown in Fig. 3.

TABLE 1. SUMMARY OF PENETRATION DATA

Penetrator Rod Inclination Residual
Shot (Rod) Target Impact (A) Residua Rod
No. Mass Thick. Vel. I Length

(g) (in.) (km/s) Pitch Yaw Total Velocity' (in.)

(km/s)

4-1529 18.7242 2.532 2.02 0 0.75L 0.75 1.31 0.24

4-1566 18.8131 2.505 1.60 12.25U 11L 16.5 Partial Penetration

4-1567 18.7850 2.007 2.02 6D 2R 6.3 1.64, 1.63n 0.29, 0.30P

4-1568 18.7652 2.514 2.66 3U 3L 4.2 2.25 0.34

4-1 569 18.8055 1.005 2.02 4U 10R 10.8 -• 0.46, 0.32,0.25, 0.28a

4-1570 18.8133 4.090 2.06 3.5D 7.25R a Partial Penetration

Residual velocity measured at the apparent fragment center of gravity L+ 0.03 knVs)
Residual rod broke into two pieces

O Only one view of residual rod obtained
d Residual rod broke into four pieces
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3.0 FINITE ELEMENT SIMULATIONS. The 1991 version of the
EPIC Research Code (EPIC91R) [11] was used to simulate all six
penetration experiments. A baseline 2D axisymmetric finite element grid
was created for each experimental configuration. All elements were
generated in a crossed triangle arrangement. Elements on the rod/plate
interface were eroded (eliminated) when their equivalent plastic strain
exceeded an erosion strain criterion of 1.5. In all the simulations, the
target plates were modeled without restraints.

3.1 Calibration With Experiments. Shot 4-1529 was chosen for
the initial calibration of the finite element simulations, since it was the
"best" shot in terms of preimpact rod inclination (pitch and yaw). The
calibration objectives were to match the following experimental data: (1)
the length of the exiting projectile, (2) the velocity of the exiting
projectile, and (3) the dimensions of the cavity in the target plate. The
first simulation of shot 4-1529 employed the Johnson-Cook strength and
fracture models to describe the material behavior in both the tungsten
rod and the steel plate. Reasonable agreement with shot 4-1529 was
finally obtained by preventing damage growth (DAM=O) and thermal
softening (M=O) in modeling the material behavior of the tungsten rod.
Maintaining the above material behavior restrictions, the remaining five
shots were simulated. Tables 2 and 3 compare the simulation results
with the experimental measurements. Fig. 4 shows the final grid plots
from the calibrated simulations.

TABLE 2. COMPARISON OF EXPERIMENTAL AND SIMULATION
RESULTS FOR CAVITY DIAMETERS

CAVITY DIAMETER (mm)
ShotNumber Entry Middle Exit

Exp. Sim. Exp. Sim. Exp. Sim.

4-1529 10 13 9.75 9.5 11.75 14

4-1566 6 11.5 -- 8 ..

4-1567 11.5 13.5 10.5 9.5 12 14

4-1568 15 15.5 13.5 11 16 19

4-1569 11 13.5 10 10 11.5 15.5

4-1570 12 12.5 10 7.5 .
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TABLE 3. COMPARISON OF EXPERIMENTAL AND SIMULATION
RESULTS FOR ROD EXIT DATA

Preimpact Rod Dimensionless
Shot Sim. Inclination (0) Exit Velocity Exit Length of Rod

Number Impact of Rod (km/s) (Final/Initial)
Velocity
(km/s) Exp. Sim. Exp. Sim. Exp. Sim.

4-1529 2.00 0.75 0.0 1.31 1.49 0.111 0.178

4-1566 1.60 16.5 0.0 ............

4-1567 2.00 6.3 0.0 1.64 1.74 0.273 0.356

4-1568 2.66 4.2 0.0 2.25 2.42 0.157 0.280

4-1569 2.00 10.8 0.0 --- 1.89 0.606 0.662

4-1570 2.00 8.0 0.0 .. .. ...

Figure 4 Final Grid Plot From Simulation of Shot 4-1529 (Baseline Grid).
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3.2 Force-Time History From Simulation. Methods to obtain
accurate time histories of the forces exerted on the targets from the
above simulations were investigated. In one approach, the net system
force exerted during a time step was determined by dividing the change
in axial momentum by the time step (AMZ /At). However, the resulting
force-time history profile became extremely noisy after the first few
microseconds; this was probably due to the simulated erosion process.
To eliminate this noise problem, the simulated time history of the target
plate's axial momentum was first approximated with a fifth-degree
polynomial. The net axial force exerted on the target at any time could
then be calculated from the polynomial's first derivative (dMz /dt). The
dashed line in Fig. 5 shows the smoothed axial force-time history that
was computed from the simulation of shot 4-1529.

3.3 Simulated Cavity Formation in the Target Plate. The EPIC91 R
code was modified accordingly to produce additional output pertaining
to the rod/plate interface velocity and the local cavity's shape and radial
expansion characteristics. Output data from the EPIC simulation of shot
4-1529 were used to analyze the characteristics of local cavity
expansion and growth in the target plate. The simulated local cavity
shape data from 20 equally spaced axial locations throughout the
thickness of the target plate were used to calibrate the parameters in the
local cavity shape function (Eqn. (2)). The data and the cavity shape
function are superimposed in Fig. 6. In this figure, the horizontal axis
indicates radial distance from the axis of symmetry and the vertical axis
represents local cavity depth. The cavity shape function parameters
are: af = 4.7 mm, zf = 5.5 mm, innt = 1.15 mm/psec, CR= 2.94 mm/psec,
a = 0.35, 1( = 1.245, and 7 0.86365 mm. Local cavity expansion
occurs in the radial direction and cavity growth occurs in the axial
direction. The characteristics of the cavity's radial expansion were
determined by examining the simulated time histories of cavity radii for
20 equally spaced axial locations throughout the target thickness. The
data from these profiles, superimposed in Fig. 7, exhibit a distinctive
pattern. Initially, upon arrival of the penetrating rod, the radial expansion
rate is highest. The expansion rate gradually decreases to zero (at
about 4.5 lasec) as the rod passes and the cavity has expanded to its
maximum radius (about 4.7 mm). The solid line in Fig. 7 represents a
characteristic radial expansion history for the local cavity. This curve,
based on the assumptions of constant local cavity shape and rod/plate
interface velocity, was plotted from Eqn. (1) by varying the local cavity
depth (z) from 0 to z, as a function of time.
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Cavity growth in the axial direction was also examined through a
time history plot of the simulated axial rod/plate interface position, shown
in Fig. 8. This curve, essentially a straight line, suggests a relatively
constant rod/plate interface velocity (= 1.2 km/s) during the penetration
process. A constant interface velocity assumption may be reasonable
for complete penetration. In the case of partial penetration, however,
the rod/plate interface velocity may be constant during most of the
penetration event, but eventually this velocity must decrease to zero.
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4.0 APPROXIMATE ANALYTICAL FORCE-TIME HISTORY. An
analytical force-time history was computed for shot 4-1529. At any time
during the penetration event, the instantaneous force exerted on the
local cavity can be determined from the product of the total pressure on
the local cavity and the surface area of the local cavity. The time history
of pressure was computed based on the penetration model described
in [9], and the surface area of the local cavity was determined from the
characteristic cavity shape function. During the penetration event, the
static pressure on the local cavity is constant and the dynamic pressure
is a function of the local cavity's radial expansion rate. The following
assumptions were made: (a) the melt layer was ignored (8 = 0), (b) the
interface velocity was constant, (c) the static pressure was based on the
finite element analysis, (d) a simplified form of the dimensionless
dynamic pressure was employed (PD = P3A2, where P is a constant), and
(e) the local cavity shape was uniform throughout the penetration event.

Within the local cavity, the radial expansion rate decreases from
a maximum at the base to a minimum (zero) at the top; the dynamic
pressure also varies along the wall of the local cavity. Because of the
assumption of constant local cavity shape, the calculated distribution of
dynamic pressure also remained constant throughout the penetration.
The local cavity shape function (Eqn. (1)) does not lend itself to an
analytical expression for evaluating the cavity's surface area. Instead,
a numerical integration technique (e.g., the trapezoidal rule) was
necessary to compute the surface area as a function of cavity depth.
The local cavity's surface area varies with time. At the beginning of the
rod penetration event, there is no cavity, so the surface area is zero. As
the penetration proceeds, the local cavity grows until it reaches its
maximum depth (z1) and surface area. The surface area of the local
cavity then remains constant until the global cavity depth equals the
target plate's thickness. Finally, the local cavity's surface area
decreases to zero as the projectile exits the target. Calculation of the
analytical force-time history requires the constants used to describe the
local cavity shape (a,, zt, 2i,,, CR, a•, K', and Z), the thickness of the
target plate, the static pressure, and the parameter P (used to compute
the dimensionless dynamic pressure). The solid line in Fig. 5 represents
the analytical force-time history that was computed for shot 4-1529. In
this calculation, the constants given in Section 3.3 were used to describe
the shape of the local cavity. The target plate was 63.5 mm thick and
the dynamic pressure parameter (Ps) was set to 0.1 itsec 2/mm 2. To
preserve the simulated total impulse, a static pressure of 2.08 GPa was
assumed. Note that this loading history has an idealized profile due to
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the simplifying assumptions mentioned above. As the figure indicates,
the salient features of the analytical calculation compare reasonably well
with the force-time history calculated from the simulation of shot 4-1529.

5.0 DISCUSSION. A methodology has been established for the
analytical prediction of the force-time history in a 4340 steel plate due
to penetration by a long tungsten rod at velocities in the range of 1.5 to
2.5 km/s. The forcing function shown in Fig. 5 was not a prediction. To
predict force-time histories, an efficient solution technique must be
devised. Once this solution algorithm has been translated to computer
code, the following items can be predicted to describe the cavity
formation during the penetration event: (a) distribution of the melt layer
thickness, (b) pressure distribution on the melt layer surface, (c) static
and dynamic pressure, shear stress along the cavity wall, (e) axial cavity
growth rate, and (f) stress and strain distributions in the target during the
penetration process. The force-time history in the target can then be
accurately predicted, along with the penetration depth and amount of
momentum transferred. In Figs. 6 and 7 the scatter could be due to the
initial erosion phase of the flat end of the projectile. As Fig. 2 indicates,
this could be modeled by varying the parameter ac as a function of global
cavity depth. Small values of ax could be used to model the initial
projectile nose shape (cylindrical), and then ax could be increased to
account for the erosion phase during which the projectile's nose
becomes pointed.
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ABSTRACT

The one-dimensional, quasi-steady-state, modified Bernoulli theory
of Tate is often used to examine long-rod penetration into semi-infinite
targets. In general, the time histories of penetration predicted by the Tate
model are in good agreement with those computed from numerical
simulations. However, discrepancies exist between the model and
numerical simulations both at the beginning and at the end of penetration.
From insights provided by numerical simulations, assumptions are made
concerning the velocity and stress profiles in the projectile and the target.
Using these assumptions, the time-dependent, cylindrically-symmetric,
axial momentum equation is explicitly integrated along the centerline of
the projectile and target to provide the equation of motion. Predictions
of this one-dimensional, time-dependent penetration model are in good
agreement with results from experiments and numerical simulations.

INTRODUCTION

A one-dimensional model, proposed by Tate [1], has become the
standard reference for long-rod penetration of thick targets in the velocity
regime where the projectile erodes as it penetrates the target. The model
assumes that the projectile is rigid, except for a thin region near the
target-projectile interface where erosion is occurring, and the interface
(penetration) velocity is found by a modified version of the Bernoulli
equation [1]:

1 2 12 (1
lpp(v-u) +Yp = Iptu +R, (1)

In this equation pp and Pt are the projectile and target densities, v is the
speed of the rear of the projectile, u is the penetration speed, YP is the
strength of the projectile, and Rt is defined as the target resistance in the
one-dimensional formulation. Physically, the penetration event is not one
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dimensional. Thus, in a one-dimensional model, some artificial means
must be invoked to account for lateral confinement by the target. This is
the role of Rt in Eq. (1).

It has been demonstrated in Ref. [2], by comparison with numerical
simulation, that the Tate model represents a reasonably accurate picture
of the time history of long-rod penetration, as seen in Fig. 1. The figure
depicts the penetration velocity and tail velocity along the centerline for
a L/D=10 tungsten-alloy long rod impacting a steel target at an initial
impact velocity of 1.5 km/s. The Tate model predicts similar qualitative
and quantitative behavior as a detailed time-dependent numerical sim-
ulation, with only a few discrepancies. The Tate model does not account
for the transient phase at the beginning of penetration, and there are two
differences near the end of the penetration event. The analytical model
predicts that the rear of the projectile decelerates too late and too rapidly
at the very end of penetration, and it predicts that the projectile is fully
eroded, with final length of the projectile being zero. It was argued in Ref.
[2] that this is a consequence of the model not explicitly accounting for a
finite region of projectile deceleration.

6 I, . I . I ,Due to the experience
U• - J a with the Tate model, and

recognizing that the Ber-
2 -noulli equation can be ob-

1.0 ", -tained from a momentum
balance, the axial momen-

0 Pentato (Nne) % tum equation has been
------ Vt more carefully examined.

OA- - A series of assumption
have been made, many of
which were motivated by

m analysis of the results of
-----T Model MO numerical simulations.

0oU From this, a penetration
model has been devel-

"°.0 20 40 60 so 100 uo oped that includes tran-
"Time (i) sient effects. It appears to

better model the early and
Fig. 1. Penetration and Tail Velocities late-time behaviors seen

in long-rod penetration. A
desire was to retain the overall simplicity of Tate's model. As will be seen,
this new model gives Tate's original model upon taking a certain limit.

MOMENTUM BALANCE

The axisymmetric projectile and target will be assumed to lie along
the z axis. The location of the interface between the projectile and the
target is denoted z,(t), with z,(O) = 0. The rear of the projectile is denoted
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zp(t), and zp(O) = -LO, where Lo is the initial length of the projectile. The
velocity along the centerline in the projectile and target is written u,(z).
With these definitions, the interface velocity u and the velocity v of the
back end of the projectile are given by:

dz. dz~
U = =~az = u,(zi) (a ).U( (2b)

dtd-_u(z 1 ) (2a) dt

A central theme of the model presented in this paper is the use of
the momentum balance along the z axis. The z component of the
momentum equation along the centerline simplifies to:

~Iu 1 (uZ) 2  aa ý Ja-uz- 2 = 0 (3)P t 2 P •z 2 ax

We now integrate the momentum balance equation along the cent-
erline over the target and projectile, or [zp(t),+00]. Since the target material
for large z is not participating in the penetration event, u,(+.o) = 0 and
a,(+-o) = 0. Also, the rear surface of the projectile is a free surface and
hence stress free, so a,(zp) = 0. Assuming that the change in density in
both the target and projectile is negligible (so that the density terms can
be pulled out of the integral), and using the definitions in Eq. (2), then
integration of Eq. (3) gives:

z raauz 1 2 1 2 4-

p• -=d p J•-dz + •p,,. + plu•
zp+** d " + * P , f I

21-2 * 0xz dz = 0 (4)

To integrate the equation further, assumptions must be made concerning
the velocity profile uz(z) and the shear stress behavior, acx.

THE MODEL

Additional physics or mechanics usually need to be incorporated to
make a model more realistic. The following assumptions are made based
on the examination of numerical (hydrocode) simulations of long-rod
impacts:

1) A velocity profile along the centerline in both the projectile and the
target is specified.
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2) The back end of the projectile is decelerated by elastic waves, with
a magnitude proportional to the yield strength of the projectile. These
waves reflect off the rear of the projectile, and this free surface
reflection decelerates the rear of the projectile. At the front of the
projectile, they reflect off the plastic zone rather than the target-
projectile interface.

3) A shear behavior in the target material is specified. As will be seen,
this is not independent of assumption 1.

Assumption 1: A Velocity Profile in the Projectile and Target

Figure 2 shows the velocity L- ,0, , , ,
profile along the centerline, from U % I-k -,s.
a numerical simulation, of a PnjectieStr -w

tungsten long-rod projectile - U®
penetrating a semi-infinite steel L io
target. The velocity in the pro- 200

jectile is constant over most of I
the projectile length, save for a 0.6 200

small region near the target- 0A - H

projectile interface. This ve- 0. Nose Target•Sb-i,- •00
locity profile will be approx- Ta

imated by a bilinear expression. 0 so
With s equal to the extent of the .02 ! I i 1 l- - , , ,.5 .3 -1 1 3 $ 7 9 11

plastic zone along the axis, the Ax .oS (m)

velocity in the projectile may be
written as: Fig. 2. Centerline Velocity Profile

U _U (Z Zi) (Zi(--S) < Z < Z;
Uz(Z) =s (5)

• z- z < (z,- s)

The behavior of the velocity in the target is more complicated.
Velocity fields in numerical simulations have a spherical behavior, and
due to this, a spherically motivated velocity profile is used [3]. Letting
r(z) = z - zi(t) + R, where R is the crater radius, the following form of the
velocity along the centerline of the target is assumed:

{ ulI(zR21] R <• r(z) < oaR
Uz(z) = (6)

0 ~ ccJ •!ý r(z)
The profile displays a similarity to that displayed from the numerical

simulation. The velocity profile in the target is only over a finite domain,
with furthest extent of z =z;+(oa- 1)R. In some sense, aR can be viewed
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as the extent of the plastic zone in the target. Finding a is nontrivial. In
the example section a couple of approaches for doing this will be pres-
ented.

Equation (4) requires the integral of the partial of velocity with respect
to time. Performing the differentiation of Eqs. (5) and (6) and then inte-
grating gives:

f Za'dz = (L-s)+ts+(v-u)u+ ,u--2 (7)

-d2 = dr = a-R 2 2 (8)f" a R Tt (X R7 -U- (o

The dot represents differentiation with respect to time; the dot over
[(v - u)/s], in Eq. (7), implies that the whole term is differentiated with
respect to time.

Assumption 2: The Deceleration of the Rear of the Projectile

The projectile is decelerated by elastic waves. Finely-zoned
numerical simulations clearly show the "step" deceleration of the rear of
the projectile-see Fig. 1. In order to keep the model simple, the average
momentum behavior of the projectile is described by the velocity profile,
Eq. (5), and a second equation is written to describe the deceleration of
the rear of the projectile.

When the elastic compressive wave reflects from the rear free sur-
face of the projectile, it returns in tension. The change in particle velocity
at the rear surface of the projectile is Av = -2cap/Ep where c is the elastic
bar wave speed (EIpd) 1 2 , and ap is the flow stress of the projectile. The
elastic-plastic interface is a boundary because of the nonlinear material
response of the plastically flowing material. Thus, the compressive wave
travels from the elastic-plastic interface, reflects as a tensile wave off the
free surface at the rear, and returns to the elastic-plastic interface, where
it reflects as a compressive wave, and the cycle continues. The travel
time of the wave is the distance divided by the wave speed. Due to
erosion and change in the size of the plastic zone, the distance of the
return trip is less. If At is the time of the round trip of the wave, then

cAt = L-s+L- f(v-u)dt- (s+ dtI (9)

The equation of motion for the rear of the projectile is then given by:
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dv lmAv _ 0, [(v-u)ng
urn AV 011 +V-l (10)dT &-to At pP(L-s)L +c c

Assumption 3: The Assumed Stress Behavior in the Target

This is actually the central and most difficult part of all penetration
models. The fundamental question being addressed at this point is, "How
does the target strength resist penetration?" The idea behind what is
done here is as follows. Let us first suppose that the three-dimensional
flow fields in the target can be determined. Then, if the target is behaving
in a perfectly plastic manner, the stresses can be calculated from the von
Mises flow rule. These stresses are then used to calculate the stress
term in Eq. (4).

First, assuming we know the flow field (ux, uy, uz), considerable
algebra produces the gradient of the shear stress:

as,2 Y, D2 u, I a'uz 11
ax x-o I ujazl/(x2 2az (1x=o

Here, Yt is the target flow stress and incompressibility of the flow has
been used in the derivation. It is expected that auIaz < 0, i.e., the velocity
of the flow field in the target decreases monotonically as one moves into
the target away from the projectile nose. Thus, the absolute value in the
denominator can be replaced with --au~/az. This gives:

-a ' =dr = -In I-z I-'=2'-'z ) dr (12)
JR axX=O 6 az =, _3 J I X2 aJZ JX=O

The first term on the right hand side can be evaluated by taking the
derivative of Eq. (6) and then evaluating at the limits. To evaluate the
integral in Eq. (12) requires information about the flow field.

Incompressible flows can be obtained from the curl of a vector
potential, since the divergence of the curl of any vector field is zero. Since
the flow in the target around the projectile nose has a spherical quality to
it, it is easiest to create a potential that produces such flow fields in
spherical (r, (p, 0) geometry. In particular, a potential that gives rise to
the type of material motion seen in the numerical calculations is
A=f(r)sin(0)4, [3]. Taking the curl of this potential gives the flow field.
The axial velocity u, is given by u, = u, cosO - uOsinO.
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Again, after considerable algebra, we have the simple result that the
integrand of the right hand side integral of Eq. (12) is equal to 2/z;
therefore, the whole integral becomes:

I odz = -1-n---In(a) = -n(a)Y (13)
JR-X JX0 6 1&J) 3' 6

What is truly remarkable about this result is that few assumptions on
the flow field have been made: 1) the flow field is monotonically
decreasing along the axis, and 2) that it have a certain reasonable
spherical behavior. From these assumptions follow the result that the
shear term in the momentum balance only depends on the extent of the
flow field (a) and the slopes of the velocity at the front end and back end
of the flow field.

The Extent of the Plastically Flowing Zone in the Projectile

The extent of plastic flow in the projectile is defined by the length s
at the front of the projectile. The determination of s is based on the
following observation from numerical simulations: the slope of the velocity
profile along the centerline is often smooth at the material interface, e.g.,
Fig. 2. In other words, the velocity profile is not only continuous, the first
derivative along the axis also appears to be continuous. Assuming this,
it is possible to derive an expression for s, as well as for its time derivative.
Equating the slopes from Eqs. (5) and (6) at z = zi gives:

U-V U (2

- -2 (14)
S 0a- 1 R

From Eq. (14) we can solve for sand the time derivative of Eq. (14), both
of which are needed in Eq. (7):

s=- u-11 (15a) ( 4  { (15b)

THE MOMENTUM BALANCE EQUATION

If the terms obtained in the previous paragraphs are inserted into the
original momentum balance, Eq. (4), we obtain

a-I . s2 2Ru
p) -,(L -s) + a pPs + oRii • p(-- ) •- + PAX (( )

1 2 1 2 7
= pp(v - u) -I pju 2u+.ln(a)Y,} (16)
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The deceleration of the tail of the projectile is given by Eq. (10), and the
time rate of change of the length of the projectile is the difference between
the penetration speed and the tail speed:

Op(Ls) 1+c-U + (17) L=-(v-u) (18)

Equations (16-18) completely determine the model. The initial pene-
tration velocity u may be obtained, for example, from the Rankine-
Hugoniot shock jump conditions.

It is informative to take a certain limit of the above equations. If the
two measures of spatial extent R and s are allowed to go to zero, i.e.,
R -4 0 and s - 0, and the Young's modulus for the projectile is allowed
to become very large, so c - 00, then Eqs. (16-18) become:

-pL 2 =1 2 +_ln(a)Y, L=-(v-u) (19)
m2 IJ 2 3  ~ PPL

These equations are Tate's original model with the target resistance
given by R, = (7/3)ln(oa)Y,; and the projectile strength Y, is identified with
the flow stress, i.e., Y, = a". Thus, if the refinements in representation of
the velocity profiles are removed, Tate's model results. The new model
predicts, at the very minimum, an Rt that varies with the extent of the
plastic flow zone and the flow stress Yt of the target. An alternate view
is that the second, third, and fourth terms in Eq. (16), along with
(7/3)1n(c)Y,, define an time-varying Rt, as suggested in [4].

EXAMPLES

The behavior of the model will be demonstrated with a few examples.
This will also be an opportunity to discuss the problem of determining a.
Although the original intent of the model was for long-rod eroding
penetration problems, examining rigid penetration allows us to focus on
target response, and hence on a. For rigid-body penetration, v = u, which
simplifies Eqs. (16-18). The round circles in Fig. 3 are experimental points
of L = 7.47 cm, D = 0.71 cm hard steel projectiles impacting 6061-T651
aluminum targets [5]. The dashed curve has Yt = 350 MPa and a constant
a = 10.7, which is the value of a obtained from a cylindrical cavity
expansion calculation in the u -> 0 limit (see [5-7] for a discussion of the
cavity expansion technique-a is equal to the elastic-plastic interface
velocity divided by the cavity expansion velocity). A constant a under-
predicts the depth of penetration as a function of velocity at velocities
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above 1 krn/s (this is also apparent in the next example). A velocity-
dependent ca results from the cylindrical cavity expansion solution when
compressible plastic response is included. The equation for a is:

(p,u2 +Y,) ýIK-pa 2u2 = Y, 1+2- K-p'u2  (20)

where Ktand Gtare the bulk and shear modulus of the target, respectively.
The solid curve used Eq. (20) and a target flow stress of Y, = 380 MPa.
Agreement between the experimental values and the model is good.

25.0 . 27.5

22.5 25.0 Y.= 1.0 GPa

20.0 22.5

Y,- 1.3 GPa --

E" 1 7 . 5 - 2 0 . 0 a , 5 .51

17.5 o
15.0

15.0 Y, - .0GWe
S12.5 a,-1.7GPa

, 12.5
10.0

10.0
77.5

5.0 5.0

2.5 2.5

0.0 0 .0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 1 2 1 4 5

Velocity (km/s) Velocity (kin/.)

Fig. 3. Steel into Aluminum Fig. 4. Tungsten into Steel

The data points in Fig. 4 are from LID = 22.9, with L = 15.58 cm,
tungsten projectiles into a steel target [8]. The dashed curve is with a
constant a = 10.3, Yt= 1 GPa, and a = 1 5 GPa. The depth-of-
penetration versus velocity curve calculafed with constant a does not
have a rapid enough increase in penetration in the 1 to 2 km/s region.
This again implies the need to use a variable a, and in fact, it was the
serious discrepancy of penetration into steel that led to the development
of Eq. (20). The solid curves calculated (x from Eq. (20), the upper with
Yt= 1 GPa and up = 1.5 GPa, and the lower with Yt= 1.3 GPa and
a = 1.7 GPa. The strength values used are in the range of values for
these materials after work hardening.

Equation (20) requires an additional modification to increase the
stiffness of the bulk modulus Ktwith increasing velocity. If this is not done,
a will go below 1.0 as the velocity continues to increase, since at some
point the rate of cavity expansion is faster than the low pressure elastic
wave speed. Physically, the bulk modulus, and thus the elastic sound
speed, increases with material compression; and increases in penetration
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velocity increases material compression. Therefore, a procedure for
estimating Kt as a function of the penetration velocity must be devised.
A heuristic argument for how Kt increases with increasing penetration
velocity follows. Under uniaxial strain conditions, the shock velocity is
related to the particle velocity by the equation u, = c, + kup, where co is
the bulk sound speed, k is the dependent slope. The ambient bulk
modulus K,, is given by the product of the density and the square of the
sound speed: K, = poC4,. Therefore, we relate the dynamic bulk modulus
with the shock velocity:

K, - pou2 = Ko 1+k0p- (21)

Equation (21) is for one-dimensional impact. We are concerned here
with cylindrical cavity expansion, and the geometric divergence would
suggest that Eq. (21) is probably too stiff with penetration velocity, so the
square root of the term within the parenthesis is taken:

K, - Ko (+k o (22)

12

Figure 5 shows the 11 p = 7.85 g/cm'
K, =166.7 GPadependence of a on pene- 10 G, = 76.92

tration velocity, u. It should 9 Y, = 1.5 W

be noted that Fig. 5 [i.e., Eq.
(20) in conjunction with Eq. 7

(22)] states that the extent of
the plastic zone decreases 6 6
with increasing penetration 5

velocity. The extent of the 4
plastic zone actually
increases with increasing
penetration velocity, how- 2

ever, the crater radius grows 1

at a faster rate than the 0
plastic zone size. This con- 0 1 2 3 4 5

clusion has been verified Velocity (km/s)

through numerical simu- Fig. 5. a versus Penetration Velocity
lations [9]. (Steel Target)

Although the assumption of nearly constant density-
incompressibility-is still valid, compressible effects, as measured by a,
cannot be ignored in the resistance of the target material to penetration.
The decrease in ax with velocity from Eq. (20) is due to compressibility in

280



the assumed plastic response, and strongly suggests that compressibility
of the target needs to be taken into account in penetration models for
these higher velocities.

This eroding penetration example brings up another issue. When
the penetration is rigid, the crater diameter is equal to the projectile
diameter. In eroding flow, the crater diameter is a function of the impact
velocity. An expression for crater diameter was obtained from the
measured crater diameters in experiments [8]. In particular,
R =R (I +0.2869Vo+0.1457V2) was used, where Vo is the initial striking
velocity in km/s and Rp is the radius of the projectile. R is calculated from
the initial impact velocity and is held constant throughout the calculation.

Although the method being used to calculate (x has some virtues,
the research on this topic is not complete. The original motivation for the
model was to match the velocity profiles seen in the target and projectile.
If the model were working well, one would think that there should be good
agreement with the time-dependent interface and rear projectile veloci-
ties. These velocities are displayed versus time in Fig. 6. The solid curves
are from the numerical simulation described in Fig. 1. The dashed curve
is from the model, with a from Eq. (20), Yt = 1.2 GPa, and ap = 1.5 GPa
(chosen to match the 7 cm depth of penetration). The agreement is
better than that seen in Fig. 1 with the Tate model, but certainly not
perfect. 6

If a linear interpolation 1 .4
in time is used to calculate 1 2 -
a, taking (x from 2 to 20 in
100 gs, then the dot-dash .

curve in Fig. 6results. Here E 0.8
Yt= 1GPaandiap=1.5GPa....0...-
The interface velocity • 0

agreement is remarkable, 04 Numerica.Simulation
and such a time dependent 0. 2 Y = 2 G1a, Y- = 1.0 GPa

a has the intuitive appeal of .T..e Model

a plastic field that grows 0.0 ........... Tate0Model

steadily with time. The ac -0.2

from Eq. (20) does grow 0 20 40 60 80 100 120

steadily in time, since (a is a Time (As)

monotonically decreasing Fig. 6. Penetration and Tail Velocities
function of u. However, for
much of the penetration event it maintains roughly the same value since
the interface velocity is nearly constant. More work needs to be done on
calculating the extent of the plastic zone in the target, even though the
cylindrical cavity expansion approach seems to work well for matching
experimental depths of penetration.
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SUMMARY

A penetration model has been presented that includes transient
effects. The model has been shown to agree with both rigid and eroding
projectile penetration data. Part of the model requires the calculation of
the extent of the plastic zone in the target, and although techniques were
presented, this is still considered an open problem.t
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Aging Aircraft: Structural Integrity and Damage Tolerance

Robert Greif David Y. Jeong, and Pin Tong'
U.S. Department of Transportation

Volpe National Transportation System Center
Cambridge, MA 02142-1093 USA

Introduction

Damage tolerance is the characteristic of an aircraft structure that enables it
to retain its required residual strength after the structure has been damaged.
The term "Widespread Fatigue Damage" (WFD) is commonly used to refer
to a type of multiple cracking that degrades the damage tolerance capability
of an aircraft structure. Degradation is defined when the residual strength of
the structure is reduced below the design limit load or when a change in the
inspection program is required to insure the desired level of safety. Multiple
cracking has been observed in several airplanes that have been in service for
sometime.

The Federal Aviation Administration Technical Center (FAATC) has initiated
a research program to investigate the effect of WFD on the structural integrity
of aging airplanes. Two areas of this research effort are discussed in this
paper. One area is the application of the hybrid finite element technique to
analyze the residual strength of riveted stiffened panels. Results from this
analysis (1) have shown that some multiple crack configurations may not
reduce the residual strength of an aircraft structure below the allowable limit
load defined by current damage tolerance regulations. That is, all multiple
crack geometries may not be considered to be WFD. In the current work,
this concept is quantified for a panel with specific multiple crack
configurations. The hybrid technique has also been used to analyze stresses
in a stiffened panel with a lap joint configuration simulating an aircraft
fuselage. Another area of research involves laboratory testing of flat panels
with multiple cracking (2). These tests were implemented by Foster-Miller,
Inc., under contract with the Volpe National Transportation Systems Center.

'Also, Tufts University, Medford, MA 02155 USA.

2Also, Hong Kong University of Science and Technology, Kowloon, Hong Kong.
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Details of the tests were designed by FractuREsearch, Inc. Test data are used
to verify proposed criteria for multiple crack linkup. A generally accepted
criterion for linkup of multiple cracks is necessary to determine the residual
strength of aircraft structures containing multiple cracking. Various
hypotheses for linkup of multiple cracks are discussed in this paper, including
fast fracture associated with critical stress intensity factor and plastic zone
interaction. Particular emphasis is given to a linkup criterion, proposed by
Swift (3) and Tong et al (1), which assumes that a lead crack will linkup with
smaller, collinearly aligned cracks when the ligament stress reaches the yield
strength of the material.

Hybrid Finite Element Analysis

An efficient computer code has been developed to analyze the related concepts
of WFD, multiple site damage (MSD) and reduction of residual strength.
This code is based on the principles of the hybrid finite element technique.
The first application of this technique to damage tolerance analysis was done
by Tong (4) in 1984. A typical aircraft structural element involves a panel
with multiple cracks, as shown in Figure 1, which is connected to stiffeners
by rivets and loaded by in-plane remote stresses o" (representing fuselage
hoop stresses). The panel also is subjected to concentrated loads which
simulate the interaction of the rivet with the rivet hole surface. The entire
domain for the problem can be treated as a single hybrid element, commonly
called a "super element".

A hybrid variational function can be written (Ref. 1), in terms of an integral
over the rivet surfaces as well as the crack surfaces rIk, in the form

[p=t--TiA+Ef 1 1 Tf 4, ds] 1

where t is the panel thickness, aA is the boundary of the element, and iii are

the displacements at the element boundaries. Ti(= aijP') and aoi are

respectively the boundary tractions and stresses, T,0  are the prescribed

tractions on aAa, the boundary for which stress is known. The surfaces of
the rivet holes are located at 1z - zk I= c where e is rivet radius. The
quantities 0i and ui are separate displacement fields which are independent
functional variables of "p. The Euler equations for the element can be
derived through the first variation of the functional 7P. In equation (1), we
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have assumed that aij satisfies the equilibrium conditions and the traction free
conditions at the crack surface.

The solution within the panel element can be found in terms of the complex
stress functions O(z) and O(z) associated with the complex variable theory of
elasticity. Using linear superposition, the stress functions are constructed
from three different functions, representing three separate physical problems

V(z) = z) + C2(z) + 13(z) (2)

*(z= ) 1(z) + * 2(z) + * 3(z)

Problem 1 is for an uncracked uniform skin subject to uniform remote stress.
Problem 2 represents the uncracked skin subject only to concentrated loads at
zk, the rivet locations. For this problem, the stress functions, 0 and 4', have
logarithmic singularities at zk. Problem (3) represents the cracked skin subject
to arbitrary crack-face traction. For this problem, Chebyshev polynomials are
used to represent the crack stresses as suggested by Gladwell and England (5).

One advantage of the variational approach to this problem is the ease with
which additional structural elements can be included into the procedure. For
a stiffened panel as shown in Figure 1, the stiffeners are represented by the
bending and stretching energy of beams, and the rivets are represented by
springs. The potential energy for the beams is

1 EA [d [v-c fl] 2 dy""O4 d, (3)

+1fEl d U d v.,oA), +(.

where w and v, are respectively the flexure and longitudinal deflections at the
panel and stiffener interface and 2c is the stiffener height. The
complementary energy for the rivets is

• , [(v,- tF -k c(X (FA)2] (4)
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where F' is the force on the rivet at Zk and a is the rivet compliance
coefficient. The hybrid variational functional r for the entire panel with skin
cracks and riveted stiffeners is the sum of the expressions from equations (1),
(3), and (4). The independent fields in w" are the stiffener deflections, the
stress function 0 and the N Chebyshev coefficients, b.. In the finite element
formulation, the independent variables are the nodal values of the stiffener
deflections, the forces (Xk, Yk) at zk and Chebyshev coefficients b.. The final
form of the matrix equation to be solved is

[ ±II=]R (5)

where _P is a column of rivet forces, b is a column of Chebyshev coefficients
for each crack, and u, represents the nodal values of the stiffener deflections.
The forcing function {R} in equation (5) is derived from the work done by
rivet forces and stiffener axial force through the displacements of problem 1.

The stress intensity factors KO(j = I, I) can be evaluated at the crack tips

from 4)(z), which may also be written as

N
K, - M~u = n•a E b. at x = +a (6)

n.1

which shows the direct relationship of Chebyshev coefficients to the stress
intensity factors. We also define the stress concentration factor in the
stiffener as

(SCF), = max , --, (7)0 0io' o )y

where qo and a, are respectively the outer and inner flange stresses of the

outer stiffener, and (10 represents the far field stiffener stress.
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A useful way to describe the damage tolerance capability of an aircraft
structure is the ability of a stiffened panel to arrest a fast fracture. This is
usually expressed in terms of the residual strength of the stiffened panel. The
residual strength diagram is based upon the critical stress intensity factor K•
(fracture toughness). The residual strength based upon skin fracture can be
written in the form

0, -= K, I r fa(8)

For a thin skin k can be a function of skin thickness and is usually
determined experimentally. In the case of multiple cracks, the residual
strength can also be defined based on net section yielding of the ligaments
between cracks. The residual strength of the skin is then the lower bound of
the strength defined by kI or net section yielding. The residual strength of
the stiffeners is related to the far field stress that leads to stiffener failure at
its ultimate strength.

Residual strength diagrams based upon skin failure (Kc = 120 ksi~rin ) or

stiffener failure q, = 82 ksi are shown in Figures (2-4). As depicted by the
logo in the upper right hand comer of the figures, the physical problem
represents a main crack centrally located about a broken stiffener (as in
Figure 1) with outlying smaller fatigue cracks near intact frames located
twelve inches from the central stiffener. In Figure 2, the outlying cracks are
located symmetrically around the frames while Figures 3 and 4 involve cases
where the center of these cracks are located on the outside and inside of these
frames, respectively. Superimposed in dotted lines are the results for the
single crack. These single crack results are useful for understanding the MSD
situation, since the initial three crack problem will become a single crack
problem after the main central crack links up with the outlying cracks.

Consider the case of Figure 2 with a far crack of length 2a2 = 3 inches.
Assuming the main crack propagates due to fatigue loading, it will linkup with
the outer crack before a, reaches 10.5 inches. Since the stress intensity factor
at the tips of the main crack becomes very large just before linkup, the
corresponding residual strength accordingly approaches zero and linkup can
occur at a very low load. Of course, this does not imply that the entire
stiffened panel is unsafe. Rather, we must analyze the residual strength
diagram for the new single crack of total length 27 inches (a, = 13.5 inches)
which is formed by the linkup. As shown in Figure 2, the new value of
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residual strength is controlled by the stiffener strength curve at point C. The
original single crack residual strength of 24.71 ksi at point A has been
reduced by 21.5% to point C due to the multiple cracks situation and the
linkup of the cracks. If the linkup occurs at a load below the value at point
C, the crack will be arrested after the linkup. But if the linkup load is larger
than the value at C, the crack will continue to propagate after the linkup and
the panel can be unsafe. The value at C is the residual strength of the
stiffened skin for this case. If the value at C is below the design limit load,
the case is a widespread fatigue damage configuration.

A similar study can be made for Figure 3 in which the center of the outlying
crack is located on the far side of the frames with the distance between crack
centers d, = 13 inches. For the 3 inch far crack, the main crack linkup
occurs for a central crack half length (a1) less than or equal to 11.5 inches.
This immediately produces a single crack of total length 29 inches (2a, + 2a2)
which throws extra load onto the frames. The panel residual strength is now
controlled by the stiffener strength at C, which is 28.6% below the original
single crack residual strength at A, and also 9.1 % below the point C of
Figure 2.

A different result is obtained in Figure 4 where the center of the small cracks
are located on the inside of the frames. For a2 = 3 inches, linkup produces
a single crack of length 25 inches and the subsequent load taken up by the
stiffener is less than in the previous cases. The residual strength point C is
higher than for the single crack residual strength point at A. Therefore,
linkup in this case does not decrease the residual strength of the panel.

The cases analyzed in Figures 2-4 can be used to examine the damage
tolerance capability of an aircraft structure. One measure of whether these
cases represent WFD (or its subset MSD) is the effect of multiple cracks and
linkup on residual strength. MSD occurs in a structure when the simultaneous
presence of cracks, at similar structural details located in a common area,
linkup to produce a residual strength which is less than the required residual
strength based on the presence of a single crack. In Figures 2 and 3, the
residual strength has been lowered to B or C, due to the presence of outlying
cracks. In Figure 4, the residual strength is unchanged by crack linkup. This
relationship between residual strength and the position of the outlying cracks
is depicted in Figure 5, which amplifies the important relationship of MSD
to inspection. For the cases considered, the critical size of the central crack
is still quite large. As an example, if the design limit load in Figure 3 is 20
ksi, the critical size for linkup is 2a, = 19 inches. It is likely that such a
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crack can be detected visually or by other means. Conversely, the critical
values for outlying cracks can be quite small. If the structure is to be
protected from possible failure resulting from sudden external impact damage
which produces a critical central crack, it is necessary to detect cracks of
sizes based on the critical values of outlying cracks, and consequently visual
inspection may not be adequate.

Although the preceding interpretation is relatively straight forward, note that
the MSD definition refers to the required residual strength. This required
strength is related to the design limit load which is 110 percent of normal
operating pressure plus the aerodynamic pressures in lg flight for the fuselage,
or generally 1.5 times the design operating load for transport category
airplanes (6,7). As a consequence of the present definition, the occurrence
of multiple cracks is not MSD if the linkup of these cracks does not result in
the reduction of residual strength below the design limit load. Therefore, in
Figures 2 and 3, if point A coincides with the design limit load, all multiple
crack cases are MSD because the residual strength, B or C, of the structure
with cracks as shown is below A. On the other hand, if the design limit load
is between points B and C, then the case with a2 = 1.5 inches is MSD and
the case with a2 = 1.0 inches is not. If the design limit load is below C,
none of the cases are MSD.

Riveted Lap Joint

Another important application of the hybrid finite element technique is to the
analysis of riveted lap joints. This configuration was an important factor in
the 1988 Aloha incident, and is located along a longitudinal lap joint fastened
with three rows of rivets as depicted in Figure 6 for a rivet pitch of 1 inch.
The failure in this incident was precipitated by the linkup of small fatigue
cracks emanating from adjacent rivet holes in a fuselage lap joint. The
solution for riveted lap joint problems can be determined by using the
complex variable theory of elasticity in conjunction with an appropriate hybrid
variational function.

The first basic problem that must be understood is the riveted lap joint
without any skin cracking. Although simplified one dimensional (bar) models
of this problem have been developed (8), the first rigorous two dimensional
elasticity solution was developed by Tong, Greif and Chen (9) in 1992.

The solution for the (uncracked) riveted lap joint may then be found by
summation over all rivets, including the rivet force in terms of the relative
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displacement of the top and bottom panels, and enforcing overall equilibrium.
The final result for rivet forces is presented in Figure 6 for an all aluminum
system with 1 inch rivet pitch and 0.04 inch skin thickness. Although the
rivet forces predicted by Swift (8) are within 5 %, the present more accurate
solution technique is crucial for eventual analysis of the problem of the rivet
lap joint with cracks.

Another problem of importance is the solution of the riveted lap joint with
several rivets missing (or failed). This problem provides insight into the load
redistribution caused by the loss of rivets and is an essential ingredient for the
analysis of a lap joint with cracks emanating from rivet holes. A typical
problem is shown in Figure 7 for the case of a single missing rivet. The
solution for this case can be obtained by applying an external load to the
missing rivet positions and solving the system using the hybrid finite element
method. Superposition of the resulting rivet loads with those for the intact lap
joint shown in Figure 6 then produces the final result with zero rivet force at
appropriate rivet positions.

A hybrid variational function for the lap joint can be written as

up -IC + • +' k.[ {(i. ). -(a.),f} +{((V.). -(VU)If2 (9)

where summation is over all rivets (except for missing rivets), the subscripts
u and 1 refer to the upper and lower panels of the lap joint, respectively, and
iru and r•r are similarly the functionals for each panel. The functional 1r. can
be written as

7C = t If(Ti-i Ti u) ds - f r. T. - P, a,1 (10)
2 k

where aA is taken over the boundary and all rivet holes, r, represents rigid
body motion of the top panel, and p,, are the known external loads applied at
the appropriate missing rivet locations. A similar functional can be derived
for the rT associated with the lower panel. Substituting these relations into
equation (9), a matrix equation can be formed in which the rivet loads
connecting the lap joint are the unknowns.

A solution for the case of a lap joint with a single rivet missing is shown in
Figure 7 for a 15 ksi far field stress. The most notable feature is the
localized nature of the redistribution of the rivet load. The rivet (row 2)
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directly under the missing rivet is the most affected, and increases in load by
25 %. It also should be noted that the redistribution of load is confined to two
rivet spacing (2 inches) along the rivet row (x-axis). After about two rivet
spacing, the rivet loads may be approximated by their asymptotic values as
shown in Figure 7. Similar variational functions may be constructed for the
lap joint in which cracks extend from the rivet holes, by including Chebyshev
polynomials to represent equivalent crack stress. This will be reported on at
a later date.

Experimental and Analytical Investigation of Multiple Crack Linkup

A test program was designed to investigate the residual strength of flat,
unstiffened panels containing multiple cracking. The flat panels were 20
inches in width and 0.040 inch in thickness. Twelve flat panels were tested
with a variety of multiple crack configurations. The test program included a
series of small coupon tests to determine basic mechanical properties of the
panel material, 2024-T3 aluminum. Values of yield strength were found to
vary between 44 and 52 ksi, depending on grain orientation and skin
thickness. Similarly, values for ultimate tensile strength varied between 64
and 67 ksi. A detailed description of the experimental phase of this work can
be found in Reference (2).

An objective of the flat panel tests was to examine the validity of proposed
criteria for the linkup of multiple cracks. One criterion for multiple crack
linkup has been proposed by Swift (3) and Tong et al (1), who hypothesized
that a lead crack will linkup with smaller, collinearly aligned cracks when the
stress in the ligaments between crack tips reaches the yield strength of the
material. This linkup criterion is shown schematically in Figure 8, and can
be mathematically expressed as

rt,(a) + rj,(b) = L (1

where rp (a) and rp (b) refer to the extent of the plastic zones ahead of two
adjacent cracks and L is the distance between the crack tips or the ligament
length. In Figure 8, the lead or main crack has a total length of 2a and the
length of the smaller crack is 2b. Conventionally, the extent of crack tip
plasticity can be estimated using the following equations which have been
attributed to Irwin (10) and Dugdale (11), respectively
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- - - (Irwin) r = - (KI) (D udale) (12)2' a P82up

where o-P is the yield strength of the material and rp is the extent of the plastic
ahead of the crack. Also, K, is the stress intensity factor which can be
written as

KI = P(a)o a 'x (13)

where 3(a) is a geometric correction factor to account for crack interaction
and ao is the remote stress.

Using the foregoing relationship for crack linkup based on ligament yield and
the Irwin and Dugdale formulas, a modified residual strength diagram can be
derived as shown in Figure 3 based on a yield stress of 50 ksi. As can be
seen, for certain combinations of stress and crack length, the residual strength
may be more susceptible to ligament yielding rather than skin fracture. For

example, if KC = 120 ksiviA, up = 50 ksi, it follows from the Irwin

formula in equation (12) that rp = 0.92 inch. In other words, at the condition
for skin fracture based on the Irwin criteria, the yield zone at the crack tip
will exceed 0.92 inch. In this case, yielding of the entire ligament is likely
to occur before skin fracture if the ligament size is within about one inch.
The ligament size is sensitive to KY. For example if K, is 80 rather than

120 kyi//j, the critical ligament size is about one-half of the value

previously calculated.

The Irwin and Dugdale formulas should be regarded as first order
approximations of the extent of crack tip plasticity because each equation is
derived from extracting the first term of a series expansion. For instance, the
Irwin equation is based upon the singular term of the series expansion for the
stress distribution ahead of a crack tip:

all = 00 _La Kt (14)

where a is half of the crack length and r is the distance from the crack tip.
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This approximation can be compared to the exact distribution of stress ahead
of the tip of a single crack as given in Reference 12:

a11 -- 00 r(15)
/r 2 + 2ar

Figure 9 shows the ratio of the approximate to exact stress distribution for a
single crack. The approximate stress solution underestimates the actual stress
by 20% at a distance of 0.3 times the half-crack length from the crack tip.

Clearly, more accurate estimates of crack tip plasticity can be achieved if the
nonsingular terms are included in the solution of the stress distribution ahead
of the crack tip. In addition, a plastic zone correction as shown in Figure 10
should be included to satisfy equilibrium. When the nonsingular terms are
retained in the solution of stress ahead of the crack tip, Tong (13) has shown
that the plastic zone size may be estimated from the relation

l(K K 1

r. 2 n up a - 1+ Kr1 0 . (16)
(o% -os,)

Thus, an expression for multiple crack linkup can be derived by combining
equations (11), (13), and (16):

2{ f p(a)a 1p2(b)b (7
{o, o113a1+ ~,~~~b((}=- 2 L. (ha) . (% %) (17)
a'. - a. [1 - P3(a) I] ap - a. [1 2 L (a).(b)]-a.

where L(Aa) is the distance between cracks which is a function of stable
tearing. That is, the effect of stable tearing should be included in the
prediction of multiple crack linkup.1 The amount of stable crack extension
due to a given applied stress can be calculated using R-curve data. Stable
tearing affects linkup by reducing the distance between cracks and increasing
the stress intensity correction factor due to crack interaction. If stable tearing
is included, the calculation of linkup stress by equation (17) requires an
iterative procedure because the amount of stable extension depends on the
applied stress.

In the present analysis, stable extension of the lead crack only has

been considered. Stable tearing of the smaller or secondary cracks has
been neglected.
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A typical correlation between test data and analysis based on equation (17) is
shown in Figure 11 for a five crack configuration. The schematic at the
bottom of the diagram indicates the symmetric geometry of a lead crack with
two smaller cracks ahead of each crack tip. The figure also compares
predictions from the linkup criterion based on plastic zone size and from the
conventional fracture criterion based on critical stress intensity factor. A
yield strength of 50 ksi was assumed. Better agreement between test results
and predictions of linkup is achieved with the plastic zone criterion than with
the fracture criterion. For the geometry shown in Figure 11, the first linkup
is predicted within 5% of the experimental value when equation (17) is used.
Other correlations between other test results and analyses have shown that
differences between experimental data and linkup predictions become larger
as the ligament length increases.

Although a yield strength of 50 ksi was assumed in the current calculations,
it is important to note that linkup predictions can vary by 20% since the yield
strength was experimentally observed to vary between 44 and 52 ksi. Figure
12 compares experimental results with linkup predictions for the upper and
lower bound values of yield strength using equation (17).

Conclusions

Two areas of research regarding the structural integrity and damage tolerance
of aging aircraft were discussed in this paper.

The hybrid finite element method is used to construct residual strength
diagrams for stiffened structures with multiple cracks. Such residual strength
diagrams are needed for damage tolerance evaluation. The results from the
hybrid technique demonstrate the relationship between location of smaller
outlying cracks, with a main central crack, relative to a stiffener and residual
strength after linkup. In addition, the relationship between design limit load
and residual strength was discussed. The occurrence of multiple cracking is
not considered to be MSD if the linkup of these cracks does not result in the
reduction of residual strength below the design limit load. The hybrid finite
element method is also used to derive rigorous solutions for several riveted
lap joint problems. Rivet loads predicted by this technique for an uncracked
lap joint were found to agree within 5 % for simplified methods. The hybrid
technique was also used to calculate rivet loads for cases where rivets have
failed or are missing. Results show that the redistribution of rivet load is
confined to two rivet spacings (or 2 inches for the configuration analyzed)
when a single rivet is missing from the lap joint.
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Correlations between testing and analysis of panels with multiple cracks are
presented. Analyses based on a proposed criterion for multiple crack linkup
are shown to provide reasonable estimates when compared to actual test data.
This proposed criterion for multiple cracks assumes that a lead crack will
linkup with a smaller collinear crack when the stress in the entire ligament
between cracks reaches the yield strength of the material The analyses are
also based on using a new equation to estimate the extent of crack tip
plasticity. Nonsingular terms in the solution of stress near the crack tip are
retained in the derivation of this new equation. The accuracy of the linkup
predictions, which includes the effect of stable tearing, are found to depend
on the ligament length. Correlations between flat panel test data and analysis
can be achieved within 10% if the ligament length is 0.5 inch or less. Results
of correlations between flat panel experiments and analysis show that linkup
of multiple cracks is controlled by ligament yielding rather than skin fracture.
In addition, results suggest that the plastic zone criterion for multiple crack
linkup, as proposed by Swift (3) and Tong et al (1), is reasonable.
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Abstract

Composite cylindrical shells are being used more extensively for
structural applications in both rotary- and fixed-wing aircraft where
low weight and high strength are important design issues. This paper
addresses the energy absorption capability of such shells, under axial
compressive loading. A design optimization procedure is developed
to improve the energy absorption by maximizing the buckling and
post buckling characteristics of the shells. The sensitivity of both
geometric and material properties is investigated by studying thin-
walled shells of several thicknesses, made of different types of
orthotropic laminates. Constraints are imposed on the longitudinal,
normal and in-plane shear stresses of each ply by utilizing a failure
criteria. Design variables include shell diameter and ply orientations.
The optimization is performed using the nonlinear programming
method of feasible directions. A two point exponential approximation
is also used to reduce computational effort. Results are presented for
Graphite/Epoxy, Glass/Epoxy and Kevlar/Epoxy composite cylindrical
shells with symmetric ply arrangements.

Introduction

The role of composite materials in structural applications has
extensively increased over the past decade due to their reduced-
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weight and high-strength capabilities. Composites have found
widespread use primarily in aerospace and automotive vehicles.
Therefore, passenger survivability, in the event of an accident, will
inturn be greatly influenced by the performance of the structural
composite components. To help assure passenger safety and
survivability in accidents, the military and the government have been
setting crashworthy standards that newly developed land and air
vehicles must meet. In order to better adhere to crashworthy design
requirements, it is necessary to maximize the amount of energy that
vehicle structural components can absorb. Research in the area of
crashworthy analysis and design has primarily been experimental in
nature (Sen et. al., 1985; Farley, 1986, 1989) due to the complexities
involved in the modeling and analysis of structures subject to impact
type loading.

A commonly used structural component found in vehicles is the
shell. Specifically, the shell of revolution or cylindrical shell has found
the most wide spread use in the design of vehicles. Since shells are
ideal for carrying many different types of loads, composites can be
used to optimize the shell's structural performance to best suit a
particular loading configuration. For crashworthy applications, it is
also important to improve the shell's energy absorbing capabilities.
This requires the determination of optimum material and geometric
characteristics for efficient buckling and post buckling deformations.

The ability to improve the energy absorbing characteristics of
composite cylindrical shells allows for the implementation of structural
optimization techniques as a tool for improving the pre- and post-
failure deformation process. Structural optimization has become an
efficient means of expediting design in several disciplines. An
extensive amount of work has been done in developing optimization
procedures to bring the state of the art to a very high level (Schmit,
1981; Vanderplaats, 1982). In the past, conventional design
procedures typically used the designer's experience and trial-and-
error methods. Today, with the availability of sophisticated computing
resources, it is possible to easily and effectively use optimization at
various stages of design.

Although a significant amount of work has been done in the area
of structural optimization, a great majority of this work has been
limited to isotropic materials where the design variables are generally
size, shape and topology. With the emergence of fiber-reinforced
composites, it is now possible to consider design parameters related
to material properties, either at the ply or laminate level. Due to the
importance of the problem, there has been some effort at using
structural optimization procedures for design with composites in
recent years (Fukunaga et al., 1991; Gurdal et al., 1991; Hirano, 1983;

312



Kicher et al., 1971; Nshanian et al., 1983; Onada, 1985; Pederson,
1991; Vanderplaats et al., 1989; Zimmermann, 1989; ).

The application of design optimization for improved buckled
configurations has been studied. Although a considerable effort has
been devoted in improving pre-failure performance of a structural
member, post-failure performance and the problem of improving its
energy absorption characteristics using formal optimization
procedures has not been addressed in much depth. To date, very few
published research are available in this area. Lust (1990) presented a
structural design optimization methodology for automobiles, which
considers design criteria associated with both linear elastic and
crashworthiness (nonlinear) conditions. By simultaneously
considering both elastic and crashworthy criteria, more mass efficient
structural designs were obtained. A scaling factor was utilized in
approximating the nonlinear crashworthy constraints. Bolukbasi
(1991) developed a preliminary design optimization methodology for
rotorcraft. This procedure minimized the system weight of a helicopter
while maintaining a specific level of crash protection. Crash response
analysis tools and parametric subsystem weight analyses were
employed in the optimization.

The goal of this research is to use design optimization procedures
to maximize the energy absorbing capability of axially compressed
composite cylindrical shells with constraints on the individual ply
stresses and the critical buckling load. Additionally, a sensitivity
analysis is performed to examine energy absorption with respect to
material constitutive properties and geometry.

Problem Description

This investigation addresses the use of formal optimization
techniques and sensitivity analysis to maximize the energy absorption
of axially compressed thin-walled composite cylindrical shells. The
goal is to maximize the area under the force-deflection curve (Fig. 1)
by using geometric and material design variables. A study is also
conducted to examine the sensitivity of energy absorption with
respect to material constitutive properties. Constraints are imposed on
the in-plane material-axis stresses of each ply and the critical
buckling load. A structural analysis procedure, based on laminate and
shell theory, is used for the buckling and post buckling analyses. The
nonlinear programming method of feasible directions combined with
a two-point exponential approximation method is used for the
optimization. Five cylindrical shells made of Gr/Ep, GI/Ep and K/Ep
with two, four, six, eight and 10 ply symmetric and unsymmetric lay-
ups are investigated.
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Structural Model

A geometric illustration of a typical composite cylindrical shell
considered in this study is presented in Fig. 2. The initial or reference
cylinders all have a length, L, of 50 inches, an inner radius, R, of 10
inches (L/R=5) and ply orientations of alternating ±300. A ±300 lay-up
scheme was chosen because it is a typical configuration used in
industry. The total number of plies used to make up the wall thickness,
t, is varied in each specimen. The plies are numbered starting from 1
through to the final ply in the laminate, with the first ply being the outer
most one. A value of 0.01 inch is used for the thickness of each ply. A
total of 30 cylindrical shells are analyzed which include 10 shells of
Graphite/Epoxy (Gr/Ep), Glass/Epoxy (GI/Ep) and Kevlar/Epoxy (K/Ep)
with two, four, six, eight and 10 ply symmetric and unsymmetric
orthotropic laminates, respectively. The properties of these constituent
materials are presented in Vinson and Sierakowski, 1987.

Analysis and Optimization

This section presents a brief description of the analysis
procedures followed by a formulation and implementation of the
optimization problem.

Laminate Analysis
Classical laminate theory (Vinson et al., 1987) is used to analyze

the individual material-axis ply stresses of the cylindrical shells. The
constitutive relations provided by this theory relate strains and
curvatures to the resultant forces and moments. These equations are
solved for mid-plane strains and curvatures to evaluate the individual
ply stresses in the shell wall.

Failure Analysis
Material failure occurs in a composite cylindrical shell if the

longitudinal, transverse or in-plane shear stress of a ply in the shell
wall exceeds its strength. Therefore, to avoid this problem, the
individual ply stresses are constrained. The interaction failure
criterion presented by Tsai and Wu (1971) is used in this research.
This failure theory is chosen because it allows a more comprehensive
formulation of a design constraint in the optimization formulation,
since all three lamina stresses are combined into a single equation.
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Buckling and Post buckling Analysis
The critical buckling load and post buckling curves (Fig. 1) are

evaluated in this research using analytical formulations. The critical
buckling load is derived using a Donnell-type linear stability analysis.
A Navier type solution is used to solve for the stability relation. The
post buckling behavior of the cylindrical shells is evaluated using von
Karman-Donnell large displacement relations and the principle of
stationary potential energy.

Optimization Formulation
The objective is to maximize the energy absorbing capability of

axially compressed cylindrical shells. Constraints are placed upon the
material-axis ply stresses, at the critical buckling load. A constraint is
additionally placed upon the critical buckling load to control its
magnitude. The shell mean radius and ply orientations are used as
design variables.

Since this problem addressed in this research is one of
maximizing energy absorption, the objective function is defined as the
negative of the area under the load deflection curve. This allows the
application of the techniques of minimization to produce a maximum.
The formal optimization problem is mathematically posed as follows:

Minimize:

Fli) i= 1,..., NDV (objective function)

where

F is the area under load-deflection curves OA and BC (Fig. 1),

subject to:

g0) < 0 j = 1,..., NCON (constraints)

OiL!! -(i•! -iu (side constraints)

where 0 is the design variable vector, NDV is the number of design
variables, NCON is the total number of constraints and subscripts L
and U refer to lower and upper bounds imposed on the design
variables. Side constraints are imposed on the design variables to
avoid unrealistic designs.
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Optimization Implementation
The optimization process is initiated by defining all the necessary

preassigned parameters (e.g., shell length and wall thickness) for the
problem. Next, the design variables are initialized and the structural
analysis is performed. The objective function (the numerically
integrated area under the force deflection curve) and constraints are
evaluated followed by a sensitivity analysis. The optimizer consists of
the nonlinear programming technique (the method of feasible
directions) as implemented in the computer-code CONMIN
(Vanderplaats, 1973) and a two point exponential approximation
method (Fadel et al., 1990). The approximate analysis is used to
reduce the computational effort involved in using exact analysis for
several evaluations of objective function and constraints necessary
within CONMIN. To reduce possible errors in the approximations,
move limits, defined as the maximum fractional change of a design
variable value, are imposed as upper and lower bounds on the
design variables, 0i. Convergence is based upon the objective
function value over three consecutive cycles, where a cycle
comprises a complete analysis and optimization. A convergence
tolerance of 0.005 is used.

Results

Results obtained using the above optimization procedure are
presented in this section. The results of the optimization are
compared against a reference (baseline) design. The material and
number of plies are varied to investigate their sensitivity on the energy
absorption. A total of 30 cylindrical shells are analyzed which include
10 shells of Graphite/Epoxy, Glass/Epoxy and Kevlar/Epoxy with two,
four, six, eight and 10 ply symmetric and unsymmetric orthotropic
laminates, respectively. Optimum configurations for maximum energy
absorption are obtained within 4-13 cycles in each case. Results for
the cylindrical shells made of symmetric laminates are presented
below. Cylindrical shells made of unsymmetric laminates displayed
similar trends.

The results of the optimization for the cylindrical shells made of
symmetric orthotropic laminates are summarized in Table 1 and Figs
3-5. Each of the cylindrical shells are subjected to a compressive
strain of 10%. Constraints are placed upon the in-plane stresses and
the critical buckling load. The buckling load constraint is used to
control the magnitude of the critical buckling load. Table 1 presents
the critical buckling load, minimum stable post buckling load and
specific energy absorption capability of both the reference and the
optimum shells. It also lists the ratio of the minimum stable post
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buckling load to the classical buckling load. The table indicates that
Gr/Ep shells are able to absorb the maximum energy and display the
highest buckling loads in both the reference and the optimum shells,
followed by the GI/Ep and the K/Ep shells. The values of the critical
buckling loads are all close to or equal to the upper bounds imposed
on them (i.e. the constraints are nearly critical). This is due to the fact
that the energy absorption can be increased by increasing the critical
buckling load. The optimization procedure, therefore, is greatly
influenced by the load limiting constraint and convergence is reached
after this constraint becomes active. The ratios of the minimum stable
post buckling load to the critical buckling load for the reference and
optimum cylindrical shells display an expected trend. The minimum
stable post buckling loads exhibit a mean value of approximately 18%
of their respective critical buckling load's magnitude. This is in good
agreement with previous experimental results. Another interesting
trend is also observed about this ratio. It is seen that for each group of
shells made of the same material, the value of the ratio is highest for
the 2- and the 10-ply cases. The smallest value occurs in the 6-ply
case for all reference shells and in the 4-ply case for all optimum
shells. The behavior of these ratios is highly nonlinear and no
conclusion can be drawn at this point.

The percent increase in specific energy absorption of the shells,
from reference to optimum, are presented in Figs 3-5. Figure 3 shows
an improvement of the energy absorption capability for the Gr/Ep
shells. The maximum increase (66%) occurs in the 8-ply shell and the
2-ply shell has the lowest overall increase (19%). Similarly, the K/Ep
shells display a maximum and a minimum increase of 60% and 23%,
respectively, in the 8- and the 2-ply cases (Fig. 4). The overall
increase in energy absorption are the lowest for the GI/Ep shells. In
this case, the 6-ply shell shows the maximum increase in buckling
load (37%) and the 2-ply shell once again yields the lowest increase
(18%), as shown in Fig. 5. Since a global minimum cannot be
guaranteed in most nonlinear optimization problems, such as these,
no conclusion is drawn regarding this nonlinear change of optimum
energy absorption with changes in the number of plies, due to
possible convergence to local a minimum. The energy absorption
capability of both the reference and the optimum shells increase, with
the number of plies, almost linearly. As with the optimum buckling
load obtained from the first part of the study, this is expected because
the wall thickness plays a direct role in supporting the loads and in
determining the amount of energy the shell can absorb.

Table 2 presents the design variable values for the reference and
the optimum shells made of Gr/Ep. Shells made of GI/Ep and K/Ep
displayed similar trends. The shell radius is allowed to change by
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+25% and the plies are allowed to vary between ±900 during
optimization. Only half of the ply orientations (0l) are presented, due
to the conditions of symmetry. For all cylindrical shells, the radii
decrease from their initial value of 10 in., in the reference, shells to a
value of 7.5 in. (design variable lower bound) in the optimum shells
for all three materials. This increases the slenderness ratio (L/R) from
5 to 6.67 and reduces the shell diameter to wall thickness ratio (D/t)
and suggests that an increase in the energy absorption capability is
also attributed to changes in these ratios. Sen et. al. (1985) and
Farley (1986) have shown experimentally that a decrease in the ratio
D/t is associated with increased energy absorption. It is also
interesting to note that although the decrease in the radius reduces
the circumferential area, the buckling load (which is directly
proportional to circumferential area) and the energy absorption
increases for all shells. This suggests that the ply orientations play a
major role in energy absorption, as shown by Farley (1989). It must be
noted that the radius and thus the surface area decrease thereby
reducing the weight of the shell, without weight being used as a
constraint. The optimum shells therefore support higher buckling
loads and absorb more energy while being lighter than the respective
reference shells. Table 2 also indicates that the ply angles closer to
the mid-plane of the shell wall decrease in magnitude (from their
reference value) and those nearer the outer surface increase in
magnitude. This trend is due to the fact that the Tsai-Wu constraint
criterion is more satisfied by the stress configurations that result from
these ply orientations.

The reference (baseline) design and optimized designs are all
feasible, i.e. designs satisfying all the constraints. Stress constraints
all stay within their respective bounds during the optimization process
and, as a result, a consistent monotonique increase in the objective
function values (energy absorption) is noted in the investigation.

Concluding Remarks

An optimization procedure has been developed to address the
problem of maximizing the energy absorbing capability of composite
cylindrical shells subjected to axial compressive loading. A sensitivity
analysis is performed to study the effect of total number of plies and
material constituent properties on the buckling load. The shell radius
and ply orientations are used as design variables. Constraints are
imposed on the longitudinal, transverse and shear in-plane ply
stresses and on the critical buckling load. The optimization is
performed using the method of feasible directions. A two-point
exponential approximation method is used to reduce the
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computational effort. Results are presented for shells made of Gr/Ep,
GI/Ep and K/Ep orthotropic laminates with five different wall
thicknesses. The procedure yields improvements in the energy
absorbing capabilities for all shells. Optimum energy absorption
configurations are obtained within 4-13 cycles. The following
observations are made from this study:

(1) The convergence was primarily governed by the load limiting
constraint imposed on the critical buckling load.

(2) Optimization increased the energy absorption capability, from
the reference values, for all the composite cylindrical shells.
The highest percent increases were obtained with Gr/Ep
shells, followed by K/Ep and GI/Ep. These results agreed well
with previous experimental findings.

(3) The ratio of the minimum stable post buckling load to the
critical buckling load agreed well with previous analytical and
experimental work.

(4) In the optimum configurations, ply orientations nearer the wall
mid-plane decreased in magnitude and those farther away
increased in magnitude. The radius reduced, thereby
increasing the slenderness ratio, indicating that shells of
smaller radii are more efficient for energy absorption.

(5) Reductions were obtained in the shell weights, although
weight was not used as a constraint in the optimization
formulation.

(6) The magnitudes and the nature of the stresses in each ply
changed significantly, from reference to optimum, and with
changes in wall thicknesses. Gr/Ep and K/Ep displayed the
most significant changes.
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Table 2. Comparison of design variables for the Gr/Ep shells made
of symmetric laminates

Reference Optimum

10 plies 8 plies 6 plies 4 plies 2 plies

Mean radius (in) 10.0 7.5 7.5 7.5 7.5 7.5

01 (degrees) 30.0 52.4 51.3 47.8 51.0 39.9

02 (degrees) -30.0 -26.7 -51.3 -14.3 -16.6

03 (degrees) 30.0 16.8 17.1 14.3

04 (degrees) -30.0 -16.6 -17.1

05 (degrees) 30.0 16.3

A

Critical Buckling Point

*0

"•o j .,L•'Postbuckling C

""Region

B
Energy Absorbed

0
Deflection

Fig. 1. Typical load-deflection graph of an axially compressed
cylindrical shell.
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Fig. 2. Composite cylindrical shell geometry and notation.
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Fig. 3. Comparison of energy absorption for Gr/Ep cylindrical shells
made of symmetric laminates.
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Fig. 4. Comparison of energy absorption for K/Ep cylindrical shells
made of symmetric laminates.
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Fig. 5. Comparison of energy absorption for GI/Ep cylindrical shells
made of symmetric laminates.
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INTRODUCTION
The U.S. Army is currently developing an Advanced Field Artillery

System. This system
uses liquid propellant _

(LP), as opposed to
conventional solid
propellant, for
projectile propulsion.
The characteristic
base pressure history
of solid propellant is a i
smooth curve. With
LP, the low frequency
components of the
curve remain
unchanged, however
a high frequency
oscillation is also
present (Fig. 1).
Projectile components AN Alt .01 ' ll .1 A20 AM Ap A

such as fuzes are a-_ (__)

designed to survive a Figure 1. LP Pressure-Time History
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certain vibrational environment [1]. The introduction of LP guns may
therefore change the environment in which such components must
function.

One means of quantifying the effect of the RLPG combustion
environment on the current projectile inventory is to conduct an
extensive firing test involving all munitions of interest. Alternatively,
finite element (FE) techniques can be used to generate a model of
the projectile. While this is a fairly standard approach [2-5], it has not
been common practice to demonstrate apriori that the FE model
appropriately approximates the dynamics of the projectile.
Experimental modal analysis (EMA) can be used to determine a
projectile's dynamic characteristics. These characteristics can then
be compared with the corresponding FE model's characteristics to
determine the accuracy of the modeled dynamic behavior. After
validation, the FE model can used to determine the effect of the LP
envirionment upon the projectile. This approach is used in this paper
to validate an FE model of the PXR6353 instrumented projectile. This
model is then used to determine the probable response of this
particular projectile to an actual RLPG pressure-time history.

BACKGROUND
The basic goal of dynamic analysis is the determination of the

dynamic response of a structure to a defined forcing function. For
complex structures this often entails the development of an
appropriate FE model. The discretized FE model yields a system of
n equations describing the dynamic behavior of the structure. These
equations can be written in the form

M + C +Kx(C0= +(0 (1)

where M, C, and K are the mass, damping and stiffness matrices, f(t)
is a defined forcing function, and x(t) is the response. For linear
structural analysis M, C, and K are symmetric and time invariant.
Equation 1 can be rewritten in the Laplace domain as

s2 M X(s) + s C X(s) + K X(s) = F(s) (2)

This equation represents an eigenvalue problem. For lightly damped
structures, it is not unusual to neglect the damping and instead
consider undamped free vibration response. The non-trivial solution of
this problem is given by
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Is 2 M+KI =0 (3)

Solution of equation 3 yields n natural frequencies, Sn=jo,,n, and n
modal vectors I,. These can be used in a normal mode analysis to
solve the forced vibration problem given by equation 1. Also, the
predicted natural frequencies and mode shapes can be compared
with the corresponding experimentally determined quantities to
determine the appropriateness of the FE model.

The experimental determination of the natural frequencies and
modal vectors constitute EMA [6]. As with FE analysis (FEA), EMA
starts with a system of equations written as in equation 2. However,
M, C, and K are now unknown. Instead, the response, x(t), and the
applied load, f(t), vectors are the known quantities. Accordingly,
equation 2 is rewritten as

B(s) X(s) = F(s) (4)

where B(s)=Ms 2+K.
The transfer function H(s) is then defined as

IAs)=[B(s)]-' (5)

Therefore, equation 4 can be expressed as
l(s) F(s) = X(s) (6)

The transfer function H(s) relates the input to the system, F(s), to the
output, X(s). In component form, equation 6 relates the input at some
point q to the output at a point p by the relation

Hpq(s) = -P (7)
Fq

These elements of H(s), Hp, are assumed to have the form

H ( r 'Fr T~r T+Qr* Fr y; TJ (8)

where Qr is a scaling factor, T, is the rth modal vector, and Sr=j1,. is
the rrh pole. This representation is based upon a simple one degree-
of-freedom oscillator [7].

Assumptions in the derivation of equation 1, and consequently
equation 6 imply that the entire transfer function matrix H(s) can be
reconstructed by measuring the transfer functions, equation 7, of a
single row or column of H(s). To increase accuracy though it is
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common practice to measure several rows or columns. These data
are then used to determine the natural frequencies and modal vectors
by curve fitting the data. Also, if multiple modes at a single frequency
are to be resolved, then multiple rows or columns must measured.
Agreement between the predicted and measured natural frequencies,
cr, and the corresponding mode shapes T, is an indication of the
accuracy of the FE model.

ANALYSIS
The PXR6353 projectile is a very complex structure. In order to

provide an accurate baseline for the validation of the FE model,
simpler sub-structures were also analyzed. As a result, five
configurations of the PXR6353 projectile were analyzed using EMA.

The first configuration consisted of the complete projectile with all
internal components. The internal components were then removed
and the projectile was re-analyzed. The remaining three
configurations consisted of sub-components of the projectile (Fig. 2).
Table 1 summarizes the tested configurations.

Section A Section a Section C

Figure 2.Sub-sections of PXR6353 Projectile

Table I. PXR6353 Configurations

Configuration Description Excitation
1 Whole, with Internal Components Shaker
2 Whole, without Internal Components Hammer
3 Section A Hammer
4 Section B Hammer
5 Section C Hammer

Both shaker and hammer excitation methods were utilized. The

shaker method of excitation provided a flat energy distribution from 1
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to 10 kilohertz. However, the hammer excitation technique proved
unable to excite natural frequencies above 8,000 Hz. This frequency
limitation is evident in Figure 3 which shows the frequency content of
a typical hammer impact used in this analysis. Response sensors
were placed to measure the response in 2 degrees of freedom (DOF)
at each measurement point. When using the hammer technique, the
only response DOF obtainable was collinear with the direction of
impact. As a result, only the radial DOF was measured in the
analyses utilizing the hammer technique.
Assuming a Spectrum

linear structure, ooE-3
reciprocity
indicates that L
the frequency '
response
functions (FRF) I
generated by ! .oo__o_
the hammer fnl.OOEO4

technique are r
C

the same as e

the FRF
generated 2. OOE-05

1000.00 2000.00 4000.00 6000.00 7669.aausing the ,Lonear Frequency ( Hz ) ' " -
shaker method Figure 3. Hammer Impact Frequency Content
for a given
configuration.

RESULTS
The first configuration consisted of the entire projectile, complete

with all internal components. Based on the expected frequency
content from the preliminary FE analysis results, the shaker method
of excitation was chosen. Because of a loose connection between
sections B and C, and the presence of potting wax, the data from this
test was very inconsistent and difficult to analyze.

Three modes, though, were extracted from the data. Modes 1
and 2 formed a double bending mode. Both modes flex in the same
direction in the Z-X plane (Fig. 4). The undeformed geometry is
indicated by the dashed line in these figures. However, in the Z-Y
plane, they deflect in opposite directions. Mode 3 was an ellipsoidal
radial mode (Fig. 5).

The projectile was then disassembled. The ballast, accelerometer
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mounting units,
potting wax and - -
telemetry
housing were _,_
removed from _-_"____-_________....

sections A and Figure 4. Whole Projectile, Before Disassembly,
B. Representative Shape for Modes 1 and 2, Z-X Plane
Disassembly of
Section C was
impossible
without
damaging the
projectile. After
reassembly, all Figure 5. Whole Projectile, After Reassembly,
fasteners were Mode 2
tightened to the torques specified by the engineering drawings.

Table I1. Whole Projectile Modal Parameters

Mode Frequency Damping Description
Number (hertz) (% critical)

Before 1 568 9.05 Bending
Disas- 2 656 7.81 Bending

sembly 3 3369 2.34 Breathing

1 842 1 st Bending
2 866 1st Bending
3 1759 1.567 2nd Bending

After 4 1786 1.035 2nd Bending
Reas- 5 2109 0.478 Elliptical, 1 Wave

sembly 6 2117 0.344 Elliptical, 2 Waves

7 2122 0.333 Elliptical, 2 Waves
8 3657 0.569 Elliptical, 2 Waves
9 3659 0.493 Elliptical, 2 Wave

The first two modes extracted for the reassembled projectile were
very similar to mode 1 of configuration 1. These modes were very
highly damped and noisy. These two conditions resulted in a very
inaccurate estimate of modal damping. Therefore, no damping
values are given for these two modes.
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The next
two modes
were very
similar to a I • -- ON,
free-free
beam's 2nd
bending mode Figure 6. Whole Projectile, After Reassembly,
(Fig. 6). Modes 3 and 4
However, the
primary plane of deflection is different for the two modes.

The remaining 5 mode shapes which were extracted were
elliptical breathing modes. Three representative shapes of these
modes are shown in Figure 7. Mode 5 has a single axial wave and is
a single root. Modes 6 and 7 and modes 8 and 9 are double roots
and have two axial waves. A modal analysis of the FE model was
not performed on either of the complete projectile configurations. A
summary of modal parameters extracted for both configurations
appears in Table II.

The projectile was then disassembled into the three sections
mentioned. Section A consisted of the boat-tail and forward motor
body of the projectile. The hammer excitation technique was utilized
to analyze this section.

Three modes were extracted for this section of the projectile. The
cross-section of modes 1 and 3 is elliptical and the cross-section of
mode 2 is triangular (Fig. 8). Although both modes 1 and 3 have
similar cross-sections, mode 1 has a single axial wave and mode 3
has two axial waves (Fig. 9).

These results of the EMA were then used to validate the FEA
model created from the engineering drawings of this projectile.

The mass of the FE model of section A is 7,424.1 g while the
actual mass is 8,065. This mass difference is primarily due to the
absence of the rotating band in the FE model. If this band is
included, the FE model's mass increases to 7,935. This 1.6% error
was judged to be an acceptable error. Table III summarizes the FE
and EMA modal parameters. The FEA predicted frequencies are in
good agreement with the experimentally determined frequencies.

Section B consisted only of the body section. The hammer meth-
od was chosen for this section. Mode shapes 1 and 2 were
extremely similar to mode shapes 1 and 2 of section A.

Modes 3 and 4 form a double mode with a shape very similar to
section A's mode 3 (Figure 8). The ellipse of mode 3 is rotated 46
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degrees from
the ellipse of
mode 4.

The FE
model's mass
for this section __ ______._

is 11,024.2 g,
while the actual
mass is 10,735
g. Transverse
through-holes
in the base of
section B which
were not
included in the
FE model
account for the
2.7% mass I _ _ _ _ _ __ _ _ _ _ _ I__ _ _ _ _ _

difference. Figure 7. Whole Projectile, After Reassembly,
These holes Modes 5 (top), 6 (middle) and 8 (bottom)
occur in a very
rigid section of the structure, - ..
so their exclusion has
minimal effect on the
predicted natural
frequencies. Table III shows ' " ,
the predicted frequencies in
good agreement with the -

measured frequencies.
Section C, the most Figure 8. Section A, Modes 1 (left)

complex section, consisted and 2 (right)
of the antenna section and
all parts between the antenna section and the nose. The mode
shapes of section C exhibited the same general displacement motion
as sections A and B. However, since section C has a major internal
division at the fifth axial station, the mode shapes exhibited a
localization. Mode 1 shows motion only in the antenna section and
mode 2 shows motion only in the windshield section. Only mode 3
exhibits simultaneous motion in both the antenna and windshield
sections (Fig. 10). The cross-section of all three modes was
elliptical.
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The mass
estimate for the FE
model of this section
(10,033 g) is within __ <
2.6% of the measured -.

mass (10,007 g). This -
agreement is
fortuitous since _

disassembly of section Figure 9. Section A, Modes 1 (left)
C to determine exactly and 3 (right)
Table I11. EMA and FEA Modal Results

Frequency (Hz) % Error Damping
Mode FEA N

EMA(%

2D 3D 2D 3D

1 1823 1941 1966 6.5 7.8 0.145

Section A 2 4265 4748 4900 11.3 14.9 0.087

3 5489 5717 5820 4.2 6.0 0.232

1 1897 1957 1984 3.2 4.6 0.207

Section B 2 4679 4902 5075 4.8 8.5 0.142

3 6111 6199 6332 1.4 3.6 0.122

1 1613 1696 1731 5.1 7.3 0.246

Section C 2 3448 - 2508 - -27.0 4.00

3 4034 4225 4345 4.73 7.7 0.583

which internal components were present was impossible. Despite the
excellent mass estimate, the frequency estimates were not as
accurate. In particular, the second frequency is in error by -27.3%. It
has been determined that section C had been previously fired and
sustained some internal damage. Therefore, it is highly unlikely that
the FE model represents the actual internal boundary conditions. A
summary of these results is also given in Table Il1.

Finally, a non-linearity survey was performed on section B. A
shaker outputting a broad band random signal from 1,000 to 10,000
hertz was used to excite the structure. Six levels of excitation were
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used. The shaker was placed at
one end of section B in the
radial direction.

Most modes were linear and
similar to the first peak in Figure
11 with minimal dispersion. A
few modes, such as those
represented by the second peak
in Figure 11, show the presence
of non-linearity. Section B is a
very simple, single piece
structure and was expected to
be very linear.

Based on the acceptance of
the individual sections as valid
models, a complete FE model of ;
the PXR6353 round was
generated by reassembling
these validated models of
sections A, B and C and adding
the parts which were excluded
for the EMA. A transient Figure 10. Section C, Modes 1
analysis was then performed (top), 2 (middle) and 3 (bottom)
using the Dyna3D FEA software
[8] on a Cray X-MP.

The .. ruency response. unction.

pressure-time -a,.0oE It' "7'0L '-' "
history shown .360A U_,
in Figure 1 was 20,0O

used as the ooo
force input for a L
20 Khz A

bandwidth C
simulation. . -.000
Figures 12 to "
14 show the n
vibrational
response of the I, . . . . . . . . . . . . . ... . . . .
projectile from 6003. 507000.00 .500.00 9000.00 0405.87

this simulation Figure 11. Non-Linearity of Section B
for three
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different locations within the structure. The overall acceleration
amplitudes agree well with the experimentally measured results.

SUMMARY and
CONCLUSION

An FE model was U-
generated for the PXR6353
instrumented artillery '=-, :

projectile. The predicted
modal frequencies and mode ._I i'"l I
shapes were in good
agreement with the
experimentally obtained
frequencies. Linearity of the
structure was established --

through a linearity study of
one configuration. A
transient analysis was then &M 0=, CM, =, W

performed on the FE model
utilizing a typical pressure- Figure 12. Vibration History at Nose
time curve as the force input.
The analysis showed good agreement with experimentally obtained
data.
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Rebending, in Thick-Walled Tubing,
due to a Radial Temperature Gradient

by
Boaz Avitzur

Abstract:

Thick-walled tubes often bend if and when they undergo heat-treatment. When
precision is important and machining follows the heat-treatment, a straightening step
precedes the machining process, to secure the alignment of the tube on the lathe. This
straightening operation leaves the tube with a residual stress pattern, which is not
axisymmetric. Therefore, each machining step causes a re-bending, resulting from the
removal of stressed material, and it changes the overall residual stress distribution pattern.
Thus, each machining step is being followed by a re-straightening step.

Similarly, subjecting a previously straightened thick-walled tube to an in-service
through-wall temperature gradient, relaxes the residual stresses (left by the straightening
process) in a non-axisymmetric fashion and thus leads to re-bending (even though the thermal
gradient is axisymmetric). Such in-service temperature gradients are experienced by tubes in
heat-exchangers, in chemical reactors as well as in rapid-firing gun tubes.

This work focuses on the calculation of re-bending due to an axisymmetric through-
wall temperature gradient, in previously straightened thick-walled tubes. Other mechanisms
of bending and/or re-bending under through-wall temperature gradient notwithstanding, this
work accounts for re-bending due to relaxation of residual stresses associated with thermal
variations in the material's Modulus of Elasticity. The temperature gradient and the material's
Modulus of Elasticity dependency on temperature are to be provided by the user.

The post-straightening residual stress distribution pattern is being calculated by a
previously developed computer program which guides the numerically controlled
straightening process

Introduction:

Shafts and beams (or beam-like products) often call for tight tolerances in their
alignment. Misalignment might occur during rolling and/or forging or extrusion operations.
Furthermore, if and when the manufacturing processes, of a beam-like product, include Heat-
Treatment and/or welding then a further misalignment occurs. When the resulting
misalignment exceeds the allowable level (of misalignment) then a 'straightening' operation
follows. The allowable tolerances in the products misalignment is being dictated by the
functions of the product (as in the case of a rotating shaft or the side members of a rail-road
car) and/or by the process that follows (such as turning on a lathe).

Very often, the 'straightening' operation entails bringing certain points, along the
beam's axis, into alignment with the product's end-points. This is being done by bending the
beam, beyond its elastic limit, with the point to be 'corrected' deviating from the beam's
alignment in the opposite direction. When processed properly, the elastic recovery, after
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removing the bending load, will bring the point of interest within the desired alignment, with
the two end-points. Associated with the recovery, from bending into the elastic-plastic
region, there is a residual stress distribution pattern, retained in the effected region of the
beam.

That, indeed, the post-bending beam contains a non-symmetric pattern of residual
stresses can be manifested by cutting the beam along its neutral axis. The two halves of the
beam w•ill then bend (curve). The distribution of such retained stresses can be computed by
gradually removing thin layers of the (stressed) beam's outer layers and then calculating the
(pre-machining) stresses, in that layer, from the curvature of bending of the remaining
beam 1. Such a re-bending also occurs when the 'straightening' operation is being followed
by machining. If that re-bending exceeds the tolerances allowed for the next operation and/or
in the final product, another 'straightening' operation will follow.

Re-bending, of a previously straightened beam, will also occur when the beam is
being subjected to a non-uniform temperature distribution, through the effected regions. (The
elasto-plasically deformed cross-sections, of the beam 2). In this case, the re-bending is being
attributed to the relaxation of the residual stress pattern, due to the temperature dependency
of the material's Modulus of Elasticity. According to Underwood and O'Hara, this can effe&t
the accuracy of gun tubes. In such cases, the anticipated through-the-wall temperature
gradient is basically axisymmetrical. Therefore, bending due to variations in thermal expansion
(per se) should be ruled-out.

Analysis:

Re-bending moment:

For the sake of the calculations, involved in this work, the stress-strain relation of the
beam's material, is assumed to be symmetrical (in tension and in compression) with a linear
rate of strain-hardening. At any cross-section, subjected to a bending moment, M, greater than
its elastic limit ,Me there will be an elastic-plastic interface at a distance 1 = H - h from the
beam's neutral axis. 17 decreases as M increases. In a beam, whose cross section is
symmetrical with respect to its neutral axis, two such stress distributions are being
represented, schematically, by solid lines in figure#1. The corresponding moment being;

Mz=2fb•,dy 2Jbcrxdy + 2fb 5dy (1)

where crx(y) follows the solid line in figure #1. Upon a removal of the load, the stress will
recover, elasticity, with c•a(y) following the dashed line, --in figure #1, for a
recovery moment, Mr, that equals the original moment (eqn. #1). The retained stress
distribution, described by the dash-dot lines, - - .- - , (in figure #1) yields a net of zero
moment. Associated with the non-zero retained stress distribution there is a strain
&, = ouy) / E, in the range- q1< y <•7. e=(y) represents the retained strain. However,
this is not the case in the ranges y < -17 and y > Y7. If however, the modulus-of-elasticity
is temperature dependent and the beam is being subjected to a temperature gradient
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(symmetrical with respect to the beam's neutral axis) between it's neutral axis and its outer

most fibers, then

fbE(y)acx(y)dV # 0 (2)

(not equals zero) any more. Yet, in the absence of external forces

J buo, y)dy = 0 (3)

where &,x(y) represents thepre-heating strain, while uxx(y) reflects the retained stress
distribution. The difference between the integrals in eqn. (2) and in eqn. (3);

A, 2JbET(y)rx(y)dy - 2Jb or(y)dy= 2Jb[ET(y) / E -1] or(y)dy (4)

is the moment being released by the thermal gradient. This moment results in the re-bending
of the beam. Upon equalization of the temperature (distribution) such as upon cooling of the
rapid-firing gun tube, the beam will return to the shape that it had prior to the establishment of
the subject temperature gradient. Namely, it will re-straighten itself.

Background:

The straightening operation is usually done by a vertical press while the beam is
resting (horizontally and freely) on two vertical supports. Thus, the cross-sections over the
resting points are subjected to a zero moment. This moment increases, gradually, towards the
pressing point (or points) exceeding the cross-sectional elastic limit only on a limited range,
of the beam's total length. Within this elastic-plastic region, the plastically deformed depth of
penetration varies continuously. Thus, the pattern and magnitude of the residual stress
distribution varies continuously, from point to point, along the effected range of the beam's
length.

Experience shows that no two beams have the same misalignment. Furthermore,
historically, the straightening operation was done by trial and error. In such cases,
regardless of whether the trial and error is a manual process or if it is being done electronically,
it does not provide the operator with the stress distribution, required for the calculation of the
residual stress distribution that prevails after the removal of the straightening load and which
is the basis for the calculation of the thermallv induced re-bending, discussed here.

At least since the late 1950's, efforts are being made to replace the trial and error
approach (to beam straightening) by a numerically controlled operation 3 Tadjbakhsh's work
was follqwed by that of L. R-L. Wang 1, which developed a computer program designed to
predict the load and the total deflection under such a load, required in order to remove a
specific misalignment in a (circular and concentrically hollowed) beam. Prof Wang, in his
derivation of the core equations used in the subject computer program, followed the classical
work by Seely and Smith 5 Unfortunately, Seely and Smith approach, to elastic-plastic
problems, was developed for elastic-perfectly plastic materials only. Indeed. upon testing
Wang's 4 computer program, Wang and Goodheim I concluded that the straightening
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operations, which were guided by Wang's computer program, failed short of the desired
tolerances. They suggested 6 different factors, which were not included in the derivations of
the equations used in the pertinent computer program, as possible causes for the computer
program's fa'uie to attain a more reliable recommendations. The material's rate of strain-
hardening being one of these six missing factors.

Shortly there-after, Avitzur 7 derived equations that account for a linear material's
strain-hardening. Many years later, Avitzufs computer program (which is based on these
equations) was tested I and was found to be successful. The subject computer program was
designed to calculate the stress distribution that prevails, in the beam, while under the
straightening load, as well as the residual stresses (that prevail) after the removal of the load.
It is this residual stress distribution which is being used as a basis for the calculations of re-
bending, under a through-wall temperature gradient.

Calculations:

Conventionally, the misalignment is being measured as the deviation, 5 , of a point
(at a distance L, from one end of the beam) from the straight line connecting the two ends of
the beam. Associated with such a deviation, one may compute the angle 19, between (see
fig# 3) two tangents to the 'corrected' bend. The angle O0 can be approximated as;

00 :tan-' (,5/ Lc)+tan-'(,5/(L - L,)) (5)

Avitzur's .9. 'o computer program computes the exact angle O0 for any set of straightening
variables.

Avitzur 9,11 applied his computer program to an hypothetical circular beam (shown in
figure #2) and made of an hypothetical material (having a Yield Strength of CM = 95,000 psi
and a Modulus of Elasticity of E = 11,000,000 psi) to correct a deviation of 5 = 0.500 inch at a
distance of L. = 102.0 inches from the beam's left end. The subject beam, though
hypothetical. contains features such as cylindrical and tapered segments and an abrupt change
in the beam's outer diameter. Features which are characteristic to gun-tubes. To test the
capabilities of the subject computer program, the two supports were assumed to be at different
distances from the beam's wider end. i.e. L1 = 24.0 inches or L1 = 36.0 in. and Lr = 188.0 in. or
Lr = 68.0 in., with the load being applied at Lp = 98.0 inches from the wider end of the beam
and near an abrupt change in the beam's cross-section. The recommended load and the
corresponding deflection-under-load (to attain the same correction of 8 = 0.500 inch at a
distance of LC = 102.0 inches) were calculated accordingly. Figure #4 displays the shape of
the correction in the beam's alignment (,with a biased scale, for the depth of bending, as
compared to the scale of its .axial length) relative to its end points, and the depth of penetration
of the elastic-plastic interface (while under load). Notice the skewed shape of the elastic-
plastic interface, due to the abrupt change in the beam's cross-section in the vicinity of the
maximum moment. The normalized "Retained Deflection" vs. Beam's Length, as measured
between the supports, is shown in fig. #5, for comparison with the same "Retained Deflection"
vs.Beam's Length, as measured between the beam's ends, fig. #4.
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Results:

For the purpose of this work, an equilibrium temperature gradient (given by equation
(6));

T(r)=T(b)+(T(a)-T(b)) log(r/b) / log(alb)) (6)

is being assumed. A simple minded dependency of the Modulus of Elasticity on temperature,
led to a radial distribution of the Modulus of Elasticity given by equation (7);

ET, = E• + (ET. - En) (log(r/b) / log(a/b)) (7)

The Modulus of Elasticity, at the bore was assumed to be ETa = 9,000,000 psi with Eb =
11,000,000 psi at the tube's OD.. The variations in the required load and in the shape of the
elastic-plastic interface, due to different locations of the two supports (for the straightening
operation) manitest themselves in variations ýi the amount of re-bending (due to a through-
wall temperature gradient). However, for the three sets of supports that were studied by
Avitzur 10 , the angle 0 of re-bending, is about 3% of the corrected (straightened) angle 80
This seems to be a very small portion of the original bend. However, when a high precision at
a long distance from the gun's muzzle is required, this might be a significant bend2.

The above values, for re-bending, were obtained for a temperature gradient at
equilibrium.This is never the case with a rapid firing gun-tube. However, equation (6), of this
study, can be replaced by any pertinent temperature gradient or even by a time-dependent
temperature gradient. The same holds true for equation (7/), correlating the Modulus of
Elasticity with temperature 2.11

Conclusions:

Thick-walled tubes, that were previously straightened, do re-bend when subjected to
an axisymmetrical, through-wall, temperature gradient. Such a re-bending constitutes a very
small fraction of the amount of straightening that causes it and it prevails only while the tube is
subjected to a given temperature gradient. The re-bending reverts itself with the elimination of
the temperature gradient. The amnount of re-bending (due to a temperature gradient) can be
calculated, provided the (prior) straightening operation was numerically controlled and the
residual stress distribution (left after straightening) has been calculated and recorded
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The Micromechanical Simulation of Ductile
Failure with an Eulerian Finite Element Code

Dr. David J. Benson
Dept. of AMES 0411
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Abstract

The effects of the distribution of voids and void clustering on ductile
fracture at high strain rates is studied by analyzing the response of dis-
crete arrays of voids. The solutions of the model boundary value prob-
lems are obtained numerically with an Eulerian finite element program,
which allows the generation of new free surfaces during coalescence.
In contrast to previous work, the calculations are carried out until the
material has fractured completely. For the small number of voids con-
sidered, the effects of the void distribution on the failure stress were
equivalent to the effects of doubling the initial void fraction. Based on
the preliminary calculations on the effects of clusters, it appears that
the ultimate stress is largely independent of the diameter of the clus-
ters, while the degree of material softening increases with the cluster
diameter.

Introduction

One of the major causes of ductile fracture in metals is the growth
and coalescence of voids. Most phenomenological models of void
growth and coalescence characterize the effects of the voids by the
volume fraction of the voids. Researchers, however, realize that the
distribution of the voids has a significant influence on the response of
the material. Analytical studies and numerical studies using the Gurson
plasticity model for quasi-static problems have shown that a non-uniform
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void distribution lowers ductility. Needleman and Kushner [1] performed
finite element calculations of a doubly periodic array of clusters of voids
and concluded that the largest effect of void distribution was on the flow
strength.

In this paper, the effect of void distribution and clustering on the
failure stress of ductile metals in dynamic problems is studied. An Eu-
lerian formulation was used to solve the model boundary value problems
since the new free surfaces associated with the fracture are handled in
a natural manner.

The Eulerian Finite Element Method

A short explanation of the Eulerian finite element method is given in
this section because Eulerian methods for problems in solid mechanics
are not discussed in the popular texts on finite element methods. Those
interested in a detailed presentation are referred to the review paper by
Benson [2].

In the Eulerian formulation, the material time derivative is the sum
of the rate at a spatial point and a convective term.

D. a. a.D= - t+ U. -- (1)

The algorithmic strategy for an Eulerian calculation is to separate the
calculation into two distinct stages: 1) a Lagrangian step, and 2) an
Eulerian step. The first step is identical to the standard step for ad-
vancing time in a Lagrangian finite element program, while the second
step accounts for the transport between adjacent elements.

The Lagrangian step used for the calculations in this paper is similar
to those found in most explicit finite element programs such as DYNA2D
[3]. Space is discretized using four node quadrilateral elements with
one point integration and viscous hourglass damping [4]. The solution
is advanced in time by using the explicit central difference method. A
lumped mass matrix permits the solution of the accelerations without
solving a system of equations. Using the standard notation in the finite
element literature, the explicit time step is given by Equation 4. The
Cauchy stress is a, B is the gradient operator, V is the element volume,
u is the velocity, F is the vector of applied forces and viscous hourglass
forces, and At is the time step. The radial return algorithm [5], [6], [7]
is used to integrate the Johnson - Cook constitutive model [8] and the
Jaumann rate accounts for the finite rotations.
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{iL} [M]- 1 {•EN-S{B V + {F}} (2)

U}n--1/2 = {ln--1/ 2 + At{jij} (3)

{f}"+ = {x}n + At{±}n+1/2 (4)

The transport of materials between elements is calculated by using
a monotonic advection algorithm developed by van Leer [9]. In regions
with a smooth solution, it is second order accurate, and where the so-
lution is discontinuous or at an extremum, it is first order accurate and
monotonic.

To minimize the cost of the calculations, several Lagrangian steps
are performed and then the total transport associated with those steps
is accounted for in a single Eulerian step. This strategy also minimizes
the diffusion associated with the transport calculation.

The Constitutive Model for the Matrix Material

The Johnson-Cook plasticity model [8] has been fitted to a wide
variety of materials at high strain rates. OFHC copper was chosen as
the matrix material because it can sustain very large plastic strain before
failure.

The hardening is isotropic and the yield surface is circular in the ir
plane. The yield stress, ay is a function of the plastic strain, z", the
normalized strain rate, ý*, and the homologous temperature, T*. The
upper case Roman letters A through C are material constants, Cp is the
heat capacity, G is the shear modulus, and K is the bulk modulus.

6-' = 2G(ý - JP) (5)
P = -Ktr(ý) (6)

- J2 •" : iPdt (7)

A o± = [A + B()J[1 + Clný*][1 T*n] (8)

* for ýo = 1.Os-1 (9)

eT -+TRooM (10)
3C
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T - TROOM
TMELT - TROOM

The Effects of Void Distribution

The Model Problem

A tension wave is initiated at the upper boundary of the domain,
propagates through the square test region containing a random distri-
bution of voids, and is transmitted out through the lower boundary. The
upper boundary is sufficiently remote from the test region that the uni-
form stress boundary condition does not prevent a non-uniform stress
distribution adjacent to the voids. To avoid large numerical oscillations,
the applied traction, T, is ramped up using a parabolic function over the
first part of the calculation (typically the first one to five percent of the
calculation).

a .n = Tmin [1, (t/tble,)2] (12)

The lower boundary is a transmitting boundary, i.e., waves are trans-
mitted through it and do not reflect back into the specimen. By the time
the stress wave reaches the lower boundary, the stress is nearly uni-
form across the test specimen. The stress time histories are calculated
by averaging the stresses in the elements adjacent to the transmitted
boundary.

The left and right edges have "roller" boundary conditions so that the
calculations approximate the stress states encountered at the center of
a Hopkinson bar.

u.n 0 (13)

t.ou.n - 0 (14)

The void distributions are taken from Needleman and Kushner [1].
They used two sets of patterns with six and three voids. Only the results
for their distributions with patterns of six voids are shown here for the
sake of brevity. In the current calculations, the test domain is a region
80.0 pm by 80.0 /m centered within the specimen. The standard void
radius for the patterns with six voids is 2.50 pm for a void fraction of
0.0184.
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Time = 0.20 Time = 0.25

Time - 0.30 Time = 0.35

ýX X:.. X

Figure 1 -The sequence of void coalescence of pattern 1 at 0.05

microsecond intervals.
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Numerical Results

The sequence for pattern 1 with an OFHC copper matrix subjected to
a tension wave of 1.24 GPa is shown at at intervals 0.05 /ts in Figures 1.
The most striking feature of this series of calculations is that the fracture
path almost invariably consists of the first voids that the stress wave
strikes regardless of their separation, and the voids that are downwind
grow very little. This is contrary to the expectation that the pairs of
voids that are closest together ("nearest neighbors") would coalesce
first. The peak values of the transmitted stress, Figure 2, range from
450 MPa to 650 MPa, demonstrating an appreciable sensitivity to the
void distribution. Although the time histories vary considerably in shape,
they are roughly triangular in form, and complete failure occurs in all
but one of the specimens between 0.30 /ts and 0.35 /us. The only
pattern that has not coalesced to failure is pattern 4, which has its
voids concentrated in a triangular region at the lower left corner of the
test region. Given the widely varying stress histories, it is surprising that
failure occurs nearly simultaneously for four of the five void patterns.

The effect of the void fraction on the peak stress was studied by
scaling the volume fraction while holding the distribution of the voids
fixed. Using pattern 1, the void volume fractions were set to 0.0092,
0.0184, 0.0368, and 0.0736 while the coordinates of the centers of
the voids remained unchanged. The time histories, which are shown
in Figure 3, show an apparently logarithmic dependence of the peak
stress on the void fraction. As would be expected, the peak stress is
reduced by increasing the volume fraction. The time to fracture occurs
earlier as the void fraction is reduced, but the final sizes and shapes of
the voids at the time of fracture appear to be relatively independent of
their initial size.

Note that the variation of the peak transmitted stress in Figure 2 is
roughly the same magnitude as the change in the peak stress obtained
by doubling the initial volume fraction in Figure 3.

The Effects of Void Clusters

The Model Boundary Value Problem

The model problem consists of eight clusters, each consisting of four
cylindrical voids, randomly distributed over a square domain 160.0 /1m
on a side, see Figure 4. The voids have a common diameter of 6.0
pim, resulting in an initial porosity of 3.5 percent. For an initial cluster
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Uniaxial Strain

Figure 4 - The BVP for a cluster diameter of 24.0 jim and the resulting
ductile fracture surface.

diameter of 24.0 jim, every void is separated from the voids in the other
clusters by at least 24.0 pm. As in the previous study, the velocity of

the upper boundary is defined by Equation 12, and the left and right
boundaries have roller boundary conditions. The lower boundary is,
however, fixed for this series of calculations.

Numerical Results

A parametric study with the diameters of the clusters set at 48.0, 24.0
16.0, and 8.0/pm was performed. While the voids associated with each
cluster are readily identified when the cluster diameter is less than or
equal to 24.0 microns, the voids appear to be randomly distributed when
the cluster diameter is 48.0/jim. A "zero cluster diameter" calculation
was performed by replacing each cluster with a single void having a
diameter of 12.0 /im. The response of a single void with same total
volume as the system of clusters was also calculated for comparison.

As shown by the stress-strain histories, Figure 5, the ultimate stress
is largely independent of the cluster diameter. After reaching the ulti-
mate stress, the magnitude of the slope of the stress-strain curve in-
creases with the diameter of the clusters out to a nominal strain of 0.15.
At higher strains, the material response is dependent on the failure of
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the ligaments between the voids, and is therefore dependent on the path
of the fracture. Since the fracture path varies with the cluster diameter,
the fracture strain is not a simple function of the cluster diameter. The
calculated stress-strain response for a single void with the same total
volume provides an upper bound to the response of the clusters, with
an ultimate stress that is approximately twenty percent higher than for
the clusters.

A similar series of calculations for a single cluster centered in the
unit cell was performed. The stress-strain response calculated for a
random distribution of clusters is consistent with the response calcu-
lated for single clusters. The ultimate stress, 700 MPa, was essentially
independent of the diameter of the cluster and significantly lower than
the ultimate stress for a single void with the same volume as the cluster.

In a previous studies, e.g., [1], the stress-strain response was found
to be a function of the distribution of the voids at small strains, and in the
previous section, the variation of the ultimate stress was approximately
twenty percent for the six random distributions. The variation observed
in the cluster calculations is less than 3.1 percent as the diameter of the
cluster varies from 1.3 to 8.0 times the diameter of the voids. When the
cluster diameter of zero is included, the variation in the ultimate stress
is still only 7.0 percent. Since the ultimate stress for the distribution of
clusters is lower than for a single cluster, the clusters apparently interact
to a significant degree. This result suggests that the details of the
interactions between the voids within a cluster are relatively unimportant
to the overall response.

The general trend is that an increase in the cluster diameter de-
creases the fracture strain. A small cluster diameter implies a greater
non-uniformity in the void distribution in the sense that the ratio of the
maximum to minimum separation between the voids increases as the
cluster diameter decreases. Based on the previous studies, the ex-
pectation would be that fracture strain should decrease with the cluster
diameter, which is contrary to the current results. These results are not,
however, in disagreement with the previous studies because the void
distributions considered here are not random. Fracture occurs when
the neighboring voids coalesce to generate a free surface spanning the
unit cell. It is reasonable to assume that the average diameter of the
coalesced voids defining the fracture surface is a function of the mean
distance initially separating the voids. Since the matrix material is es-
sentially incompressible, as the average diameter required for the voids
to coalesce decreases, the associated fracture strain also decreases.
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Figure 5 - The stress-strain histories as a function of the cluster
diameter.

As the cluster diameter increases, the initial mean distance between
the voids in this study decreases, thereby reducing the fracture strain.
The relationship between the cluster diameter and the fracture strain is
not monotonic because the set of voids defining the fracture changes
in discrete jumps with the cluster diameter.

Conclusions

The peak transmitted stress for a random distribution of voids was
found to vary by as much as twenty percent, while the peak stress for
a random distribution of void clusters varied by only three percent over
a broad range of cluster diameters. This suggests that the geometrical
relationships between the voids (or clusters) play a much stronger role in
determining the failure stress than the details of the interactions between
the voids within a cluster.
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Validation of A-Posteriori Error Estimators
by a Computer-Based Approach

Dr. T. Strouboulis*, C.S. Upadhyay, S.K. Gangaraj and K. Copps
Department of Aerospace Engineering, Texas A&M University,

College Station, TX 77843-3141, U.S.A.

Abstract
A computer-based methodology which determines the quality (or robust-
ness) of a-posteriori error estimators is described. The methodology ac-
counts precisely for the factors which affect the quality of error estimators
for finite-element solutions of linear elliptic problems, namely, the local
geometry of the grid and the coefficients of the differential equation. The
methodology can be employed to check the robustness of any estimator
for the complex grids which are used in engineering computations.

1. Introduction
A-posteriori error estimation has become a key feature of practical finite-
element analysis. Because of their practical importance error estimators
have been the focus of intensive research; see for example [1-18] and
the references in these papers. While some a-posteriori error estimators
have been analyzed mathematically many estimators have been derived by
purely heuristic reasoning. Usually the estimators are validated numeri-
cally on a set of benchmarks (example problems) which are selected in an
ad-hoc manner. Most benchmark computations fail to isolate the basic
factors which influence the performance of estimators and can motivate
wrong conclusions. In this paper we present a clearly formulated objective
validation principle for error estimators which takes into account the ma-
jor factors influencing the performance of estimators in the case when the
element is not at the boundary and the exact solution is smooth (in the
neighborhood of the element). The methodology is completely numerical
and can be used even when the definition of the estimator is unknown and
is given only as a black-box computer program.
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In practice, we are interested to have an accurate estimate of the er-
ror in a cell Wo of the mesh Th (we will use the term cell to refer to a
small patch of elements; the cell may consist of a few (possibly one) el-
ements). The performance of any error estimator in wo' depends on the
local geometry of the mesh in a slightly bigger patch wLh which includes
w6 in its interior (see Fig. 1) and on the local structure of the solution
and no heuristic benchmarks can properly account for these factors. The
methodology given below enables us to focus in the cell of interest and
to study the robustness of any error estimator (even if it is only available
as a black-box subroutine) for the actual geometries of the grids which
are used in the engineering computations. The methodology requires the
solution of relatively small problems in the regions of interest and is inex-
pensive. In contrast, benchmarks require global computation (which can
be expensive) and do not lead to reliable conclusions.

The quality of an error estimator in the cell w0' is measured by the
effectivity index

I '°hW £wh :=ty / (1)

rnwhoo

where IIjehI,,,h is the norm (of interest) of the error over wo, Eh is an
error estimator for this norm which is computed in terms of element error-
indicators 77,, r denotes an element in the mesh Th. In this paper, we will
consider estimators for the energy-norm of the error. The methodology
of the paper can also be used to study the quality of estimators for other
norms. Let Q denote the domain of the problem. It has been shown
(e.g. [1], [5]) that the range of the global effectivity index, rp, exists for
several estimators based on residuals, namely there exist constants 0 <
CLj < CUO < +o0 such that

0 < 00 < K• < 1 < 0 0(2a)

The two-sided inequality (2a) has been proven under very general assump-
tions about the exact solution (it is only required that the exact solution
has finite-energy), reasonable assumptions about the regularity of the data
(all practical cases are included) and under mild restrictions on the regu-
larity of the mesh (for example see [5]). Inequality (2a) can also be written
in the form
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1 (2b)

which expresses an equivalence between the global norm of the error and
the estimator. Practical values for the equivalency constants CI and Cu"
cannot be obtained for a given estimator unless further information is
known about the class of solutions of interest and the finite-element meshes
employed. A concrete example of how the constants can be estimated in
the case of a simple residual estimator was given in [13-15]. The values of
CL' and CU' depend strongly on the geometry of the grid and (relatively
weakly) on the smoothness of the solution; the geometry of the grid must
be understood in connection with the differential operator (see [13]).

It can also be shown (see [16-17]) that under reasonable assumptions
about the grid we can determine the asymptotic range of the effectivity
index for any estimator in any small interior-cell wo' (a cell which is sep-
arated from the boundary by several mesh-layers) of the grid; i.e. there

h h

exist constants 0-< C • CU < +oo which depend only on the local
geometry of the grid in w0h and a few mesh-layers around it (the geometry
of the grid in a sufficiently large patch w h which includes w h in its interior)
such that (as the local mesh-size in w6 and w, tends to zero)

0 ?< C < K,,h < C'0 < 00 (3)

The constants CL6, CujO are the best possible constants (i.e. they can
be achieved) over an entire class of smooth solutions which occur in the

field of application. When the values of the constants CL , Cý° are known
we can also manufacture an upper-(resp. lower-) estimator version of E£,oh

denoted by E'oh (resp. oh) defined by

S1 1
_-h -' h Eoh (4a)

We then have

Elh 0I < 06 < c_/°U
1 <,h h _

(4b)

S-< o II hl -<
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The lower-estimator version of an estimator may be employed to drive
adaptive-refinement algorithms in order to avoid over-refinement while
the upper-estimator version may be used to guarantee a safe stopping-
criterion.

Let us define the robustness index IZh (0 < R0h < 0) which expresses
the reliability of the estimator:

1 1
ax{(I1---+I--C)I) (baI

?h :=max Chb-I, + Ih0h 1+ 11

The robustness index expresses the deviation of r and 1 (see (2a), (2b))

from the ideal value r = 1. (Hence 70h = 0 is the ideal value for the
robustness index.) The robustness of an estimator for a given class of
meshes T = {Th} is given by

R7(T) max 1iTh Th:= max 7•0h (5b)
ThET wo EC(Th)

Here C(Th) is the set of interior cells in the mesh Th. The robustness
index defined in (5b) characterizes the performance of the estimator for
elements in the interior of the domain. Because most elements are in the
interior of the domain (where the solution is smooth) the validation of
the estimators has to be made especially for the case presented in this
paper. The validation of the estimators for elements located at or near
the boundary and singular points will be given in subsequent papers.

If an estimator does not display reasonable robustness for the interior-
cells in the meshes of interest, i.e. if R(T) is too large, the estimator is
unreliable and should not be used. The robustness index depends on T,
the family of meshes under consideration. (Hence restrictions placed on
the mesh-generator could possibly increase the reliability of an estimator.)

The robustness index is an objective quantitative characterization of
the reliability of an estimator. Hence, analogously as the effectivity index,
the robustness index of an estimator should be reported.

This work is part of a study of the properties of local a-posteriori
error estimators (see [16-18]). The objective of the study is the devel-
opment of new adaptive grid methodologies for quantitative control of
the local error in finite element computations. This paper summarizes
the work reported in [16-17] which deals with question of checking the
quality of error-estimators in the interior of the mesh for specific class of
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grids employed in practical computations. In [18] a study the effect of the
pollution-error on local error estimation is given.

Following this Introduction we present the definition of the model
problems (linear elasticity and heat-conduction), we describe two types
of error estimators, we present the methodology for the computation of
the robustness index and we outline its theoretical justification. Finally,
we give examples which demonstrate how the robustness index of error
estimators for complex finite-element meshes can be computed and how
it is possible to increase the reliability of an estimator by proper selection
of its various parameters.

2. The model problems
We shall consider the vector-valued boundary-value problem

2Li,(u) :=-E Dj (oii(u)) = f, in Q
j=1

ui = 0 on rD (6)

2

E aij(u) nj = ti on FN
j=l

where i = 1, 2.

Here Q C R 2 is a bounded domain with boundary a9Q = rD U FN;

n := (n1 , n2) is the outward pointing unit-normal on FN;

f , i = 1, 2 are the components of the load-vector (body-force);

ti, i = 1, 2 are the components of the normal-flux vector (traction) applied
on FN;

FD 5 0, FD nFN = 0; u = (Ul, u2) is the solution-vector (displacement);

1 2
efi(u) := (Djui + Diuj) , j(u) := E aijkEkt(u), i,j = 1,2

k,1=1

(7)

are the components of the flux (strain, stress);

ai3ke, i, j, k, t = 1, 2, are the material-coefficients (elastic constants) which
in the case of isotropic plane elasticity are given by aijkl = ,•(6 ijbke +
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b5itbkj) + A6ikbje where bij is Kronecker's delta and A, y are Lam6's con-
stants.

We also introduce the scalar elliptic boundary-value problem (heat-
conduction in orthotropic medium), namely

2

L'(u):=- Ok (gKkDju) =f in Q

u = 0 on FD (8)

2

E qk(u)nk=t on PN
k=1

2
Here qk(u) E KkeDou, k = 1,2 are the components of the flux-

t=1
vector (heat-flux) and Ikt, k, f = 1,2, are the entries of the thermal-
conductivity matrix which is symmetric, postive definite. Below we will
let K,..i,,, KmI x denote the principal values of the thermal-conductivity
matrix.

Let us now cast the model problems in variational form. Let us denote
the space of test-functions by

H1- := { (V,V 2): vi E H1 (Q), vi =0 on FD} (9)

The variational form of the boundary-value problem (6) is now posed as:

Find u E H~r such that

f 2 2

B1(UV) =IEfiVi+IrN Efizvi V V (10i=1 N j=1

where the bilinear form Bp : H'• x H-D -- R is defined by

Bo(u,v):=j aijkeDeujDkvi. (11)

The energy-norm over any subdomain S C Q is defined by

IIIvIIIs := Bs(v, v) (12)
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where Bs(u, v) has the obvious meaning.

In the case of the scalar elliptic problem given by (8) the bilinear2

form is given by B'(u, v) : ka •KkeDeuDkV. The weak-solution of
k,t=l

(8) satisfies:

Find u EH := {v E H'(Q) : v = 0 on rD} such that

B,(uV)=jfv+ HD (13)
rlN

The energy-norm in any subdomain S C Q? is defined by IlIvIlls
SBS(Vv)

Let T = {Th} be a family of meshes of triangles or quadrilaterals
with straight edges. It is assumed that the family is regular (i.e.: for
the triangles the minimal angle of all the triangles is bounded below by a
positive constant, the same for all the meshes; for the quadrilaterals see
conditions (37.40) in Ciarlet [19]). The meshes are not assumed to be
quasiuniform. Let us introduce the finite-element spaces

={u E H : uoQ(k) e P(?), i= 1,2, k = 1,...,M(Th)} (14)

where Q(k) is the mapping function for the kth finite-element which maps
either a standard triangular element (using an affine transformation) or a
standard quadrilateral element (using a bilinear transformation) onto the
kth finite element, ? denotes a standard element, M(Th) is the number of
elements in the mesh Th, P2p(F) denotes the set of polynomials of degree

over ;. We let Sh,rD "- S' n H' denote the discrete test-space. The
finite element solution uh (for the elasticity problem) satisfies:

Find uh E SP such that

Bn(uhIvh) = Efv - L 2-giv V vh% rD (15)
N i=1

The error is eh := u- uh

Remark 2.1. We addressed only (for simplicity) the model problems
for which the differential operator L (or L') is homogeneous with constant
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coefficients. The theory and the procedure holds for the general case, for
non-homogeneous operators with non-constant (but smooth) coefficients.

In the following we give two representative classes of estimators for the
energy-norm of the error and we employ the model methodology to check
the robustness of various versions of estimators from these classes. Below
we define the estimators for the elasticity problem (the estimators for the
scalar model problem (9) may be obtained by analogy; see also [16]).

3. Element-residual error estimators

3.1 Implicit element-residual estimator

We introduce notations needed for the description of the estimators. For
each triangle (quadrilateral) r C Th, we denote by E(r) and N(r) the set
of its edges and vertices, respectively. We define the local bubble-spaces of
polynomials

H' :m-W : Wi C PDp+l, IP(wi) = 0, i = 1,2} 1 h (6

where HIP is a projection-operator defined over element T (see [6-7]).

We define the interior-residual in element T as

r. := -L(uh) + f (17)

where L(uh) := (Ll(uh),L 2(uh)), f := (fl,f2),

and the jump or edge-residual associated with the edge c := aTi. fnl & t

J, := [o'(uh1o.u)- _r(uh J)]n (18)

where n is the unit-normal assigned to the edge c.

The residual-functional for element T is

7(v):= v .r, + 1 Y' v.J•, v E H1 (T) (19)
2 EE(i-)

We now define the element-residual estimator for the model problem
.(6) (we give the estimators only for elements in the interior of the domain).
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The element error indicators for the implicit element-residual estima-
tors for elements of any degree p are:

S: = Il e lll(2 0 )

where

e. E H, : B,(e,,v.) = F ,'(v,) V vT e H17 (21)

In the following we will study the robustness of various versions of the
implicit element-residual estimator. Of particular interest are versions
based on equilibrated residual. Element-residual estimators which employ
equilibrated data in a general setting of h - p approximations have been
proposed in [12].

3.2 Equilibrium of the residuals

The residual data for the local problems (21) are equilibrated if the fol-
lowing consistency conditions (equilibrium equations) are satisfied,

jr,+ 1 E J, = Oil+0i 2

(22)

fx r,± + Ix J, = 0i3
2EE(r)

Here il, i2 denote the unit-vectors along the global coordinate directions in
R 2 and i3 the out-of-plane unit-vector. The element equilibrium equations
(22) will hold if

ZE.{Y (iiNj) il + ):7 (i2Ni) i2 =0i = +0 i2

(23)

x× {X 7-(ilNi) il + ±F7 (i2Ni) i2} =0i 3

nvn•

provided that the set of functions {Ni}!=v satisfies Nj= 1, Vr E Th.
i=1

Here we let Ni f be the linear (for triangles) or bilinear (for quadrilaterals)
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element-shape-function which corresponds to the i-th vertex and nv is
the number of vertices for element r (nv = 3 for triangles, nv = 4 for
quadrilaterals). The equilibrium conditions for element r will be satisfied
automatically if

.Fr(it i) = 0, f = 1,2, i= 1,...,nv (24)

These conditions, however, are not expected to hold for general meshes
and solutions; below we discuss ways of correcting the definition of 'r, in
order to satisfy conditions (24).

3.2.1 Ladeveze's flux-splitting technique

The definition of F, in (19) may to be modified in order to satisfy (24)
by letting

,(V) - (V) +:- J91rv" 06 , v E H'(T-) (25)

Here, 0T is the correction of the edge-residuals for the element 7.

We let

Woe + ( l±6 2 ) I ECE(T) (26)

where,
(• +1, ifT=,ri.,

where it is assumed that the edge normal n has been assigned to the edge
c in an arbitrary but unique way and r11 and ro,,, are defined as shown in
Fig. 2. The linear functions Oc are defined as,

2 2if := - (2Ac - Af) , ¢ 4:= 2- (2A:- A') k = 1,2 (27)
1 Id If[

where Ak, k = 1,2 are the linear shape-functions defined over the edge C.
Using this definition of 0, 1, we can decouple the problem of determination
of 0,1, for the whole domain into small local problems involving only
patches of elements connected to node X, as shown in Fig. 2a. We have
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K0Ok f A l I k = 1,2, C E E(7) (28)

Thus, for each patch around a node X we obtain a linear system (see [3],
[4], for the details)

x(it. 0T) Ox = -. F,(iebx) , i = 1,2 k= 1,...,Nx (29)

where Ox denotes the basis function which corresponds to the vertex X,
rx denotes the k-th element connected to the vertex X, Nx is the number
of elements (or edges) connected to the vertex X.

The linear system (29) has a one parameter family of solutions. Spe-
cific choices of solutions have been suggested in [3], [4]; in the numerical
implementations we employed these choices. Below we give the definition
of the edgewise-linear correction 0,. Let us consider the interior-vertex X
and let us also denote ci, i = 1,. . . , Nx the edges connected to X. We will
determine the coefficients 0'(',X) which is associated with the edge f and
the vertex X and is employed in (26). Here the index v(c, X) identifies the
local enumeration of node X, as used in (26) for the unknowns associated
with the edge; see Fig. 2b.

a. Bank and Weiser's equilibration [4]:

A solution of (29) can be obtained by letting

it. O*(1'X)Cl =- -x(itqx), i = 1, 2

i . O•"fx) = it.OV6l-l'x)-.F X(itox) , f=1,2; i==2,..., I
(30)

b. Ladeveze's equilibration [3]:
Here the coefficients 0v(Ex) - (ie •0(•"x))i 1 , i = 1,..., N are

e=l

selected such that

N
IX(O) := Y [wi (i" ,(,E,"X))]2 (31)
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is minimized for t = 1 and t = 2 separately, where wi is the weight
associated with each edge ci. In [3] the weights wi have been taken as 1.
For this choice of weights, the solution of (24) is given explicitly as,

1 N
il.O(fN'x =-L-(N - i + 1)Y'1x(ieqx), = 1,2

il" OV(IA- it OV(ENX) - Fx (itex), = 1,2

it -O.(f"x) ij .'"' I),X) - ) = 1,2; i = 2,3,. .. , (N -1)
(32)

If we take the weights wi := eil-, we can obtain a different 0, satisfying
(29).

4. Error estimators based on recovery
techniques

Error estimators can also be based on the superconvergent patch-recovery
technique [8-9] which is known as the Zienkiewicz-Zhu (Z-Z) procedure.
The element error-indicators for elements of any degree p are

77 := Il-* - U-(Uh)lL 2(,-),a-4 (33)

where

110L12(r),a-l o=trij a-'k 47W(34

whr -1

whereijk are the entries of the compliance tensor, o-* is the recovered
flux.

Let wx := r T' denote the patch of elements connected to vertex
XEN(r')

X. For each patch wx we recover the patch-projection &x by solving the
following least-squares problem:

inf Ilo.(uh) - I IL2(wx),a, _,{yflp = IIO.(uh) - X IIL2(wX)a._l,{y11np
ax E Pp(-X) t=1

(35)
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where ylyj=l denotes a set of sampling points in wx and

110o11L2(Ex),a_,{ye}2• • ij(ym) a-' (Ym) (36)

m=1 ij,k,e=1

a,* is obtained by averaging the patch-projections &X over the elements
(see [8], [9]).

Remark 4.1. Although the intention in [8], [9] was to use superconver-
gence points (as sampling points), the estimator performs very well (see
[17] for the details) also if the sampling points are not superconvergence
points. Note that the superconvergence points do not exist for the gen-
eral meshes, like the meshes shown in Figs. 1, 3 which are employed in
the examples of this paper.

5. The methodology for checking the
estimators

We now describe the numerical methodology which is employed in the
calculation of the robustness index for a given estimator. The robustness
index depends on the following factors (see also [16-17] for further details
and the complete theoretical setting of the methodology):

a. The geometry of the grid:

The main factor which affects any error estimator is the geometry of
the grid namely the connectivity or topology of the grid and the geometry
(distortion) of the elements. The element geometry has to be considered in
connection with the differential operator for the boundary-value problem.
For example the orthotropic heat-conduction operator can be transformed
by an affine transformation to Laplace's operator on a distorted mesh
which has different minimal and maximal angles.

b. The class of solutions:

In this paper we study the robustness of error estimators for linear el-
liptic equations and interior mesh-subdomains. It is well-known that the
solutions of elliptic boundary-value problems are analytic in the interior of
the domain if the coefficients of the operator and the right-hand side are
analytic; for this reason we will consider the class of smooth solutions. Of
particular interest is the subclass of smooth functions which satisfies the
homogeneous differential equation (we will refer to such solutions as "har-
monic"; if the solution satisfies Laplace's equation it is truly harmonic).
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The asymptotic properties of error estimators for the class of smooth so-
lutions can be studied by considering the class of polynomials of degree
(p± 1).

We now give an outline of the numerical procedure which determines
the robustness index 1? for any error estimator.

Let us assume that we would like to determine the robustness of an
estimator for a mesh Th from a given class of meshes (the class may be
defined as the class of meshes produced by a commercial mesh-generator
or an adaptive code). Let {wx}=L1 be the cells of elements connected to
the vertices of the mesh. Let wx be an interior-cell (it is separated by
several layers of elements from the boundary, singular-points and material-
interfaces). Let

hW-O0 := W-CX

and for s > 1, integer, define the patch
h

w :- U WX

XEJArW(')

TtC~

From the analysis (given in [16] for locally-periodic meshes) and numerical
experience (for more general meshes) we know that the effectivity index
for any estimator in the cell wh depends practically on the geometry of
the mesh in the patch Lo for only a small s (s = 1 - 4) (more precisely
increasing s will change the robustness index only minimally). Given a
mesh Th (resp. class of meshes T) constructed by a mesh generator, there
are patches w h of various types (topologies). We can now analyze all these
patches separately and compute TZTh (resp. IZ(T) ) as defined in (5b). For
example, in Fig. 6 (resp. Fig. 7) we indicate the mesh-cells woh shaded
gray and the patch wh, for s 3 (resp. s = 4), with its perigram shown
by thick line, for various interior-cell/patch combinations from the grid
shown in Fig. 3 (resp. Fig. 1). We can determine the robustness of any
error-estimator in wh as follows:

1. Completion of the mesh-cell to a periodic super-patch.

Translate and scale the patch wh so that its imagewC-h C_ = [-1, 1] x
[-1, 1] (see Fig. 4b). Then employ a mesh-generator to complete the mesh
in "h into a periodic-mesh T in the super-patch Z (see Fig. 4c).
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2. Periodic boundary-value problem:

For given exact solution u which is a homogeneous polynomial of
degree (p + 1) (u E (Pp+,)' or exact "harmonic" polynomial solution
u E (,P+i)2 such that Lj(u) = 0, i = 1, 2), material properties and
mesh-pattern (the local geometry of the grid in the cell w0h and the patchh

WS ) determine

a) The finite element solution u h,

b) The exact error eh,

by solving the following periodic boundary-value problem:

Find zh E Hh (p) such that
Bper(Zh, vh) = B~2 (u - u, vh) v vh z H~er (•per) (37)

where
-Ih~er(5) ={wh E H'(Z) : wh(-l,x 2) = wh(lX 2 ), wh(xI, -1) = wh(x 1 , 1)

and whl E(pp) 2, rEI}I

uih denotes a continuous piecewise p-degree interpolant of the exact solu-

tion u.

Select the solution zh of (37) which satisfies

Jh =J(U Uh) (38)

and define

u =u 1 +z ; =h(u-ui) - z. (39)

Thus from (39) the finite-element solution uh and the exact error eh are
obtained; then for a given estimator the effectivity index can be computed
using uh, eh namely

K0h = K W h (material coeff., grid-material orientation, pattern, solution coeff.)
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3. Numerical optimization

Let
Cuh CLh mn mn 0

G max max K wh I CL = m min m K oh
material coeff. solution coeff. 0 material coeff. solution cod!.

(40)

The bounds CuO, CLo for a given class of solutions and materials, a given
pattern and for a given grid-material orientation can be computed using
numerical optimization. The robustness of the estimator in woh C wh is
computed from

1,oh := max TR'h]
W s=1,2,3,... W0

hm h }
Wh := max (I1-Cýr 1 + I1-c2 I) 0, 01- 1-h I + 0

(41)

The robustness of the estimator for the mesh Th can then be determined
from

lZTh max R. h (42).W~h=wX

XEArit(Th)

Here Xint(Th) denotes the interior vertices of the mesh (the vertices must
be separated by two (or more) layers of elements from the boundary of
the domain and from material-interfaces).

Let us underline the reason for the optimization. In general we know
only that the solution satisfies the differential equation, e.g. it is har-
monic (when f = 0). Hence we wish that the effectivity index is small
for the entire considered class. From the results of the theoretical study
(see [16]) we can restrict the class of functions to homogeneous harmonic
polynomials of degree (p+ 1) only. Establishing the bounds for the classes
of meshes and solutions of interest is essential for judging the robustness
of an estimator.

Remark 5.1. Note that the methodology assumes that the local mesh-
size h is sufficiently small so that the exact solution u can be replaced by its
local Taylor expansion of degree (p+ 1) (the validity of the methodology is
asymptotic). However numerical studies show (see Section 6.2 below) that
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the robustness index governs the performance of estimators in the range
of the practical engineering computations which often employ relatively
coarse grids.

6. Numerical studies of robustness of
various error-estimators

We present examples of the application of the methodology described
earlier to study the robustness of several error estimators, namely:

1. Implicit element residual (Est. 1) (Eqs. (17)-(21)).

2. Implicit element residual with equilibration (Est. 2) (Eqs. (17)-(32)).

3. Estimators based on smoothening or Z-Z estimators (Est. 3) (Eqs.
(33)-(36)).

Note that in [16] we also studied the performance of several other estima-
tors (explicit element-residual, subdomain-residual etc.).

We now proceed to the discussion of the numerical studies.

6.1 The robustness index for polynomial solutions

Here we address three questions:

1) How many layers of elements should be taken around the cell wLO,ah h

for the values of Cý6, Cý°, Z,0h to be practically independent of the
surrounding mesh in the periodic super-patch Z ?

2) How much do Cý6, C0j and RT•h computed from a periodic super-
patch which includes w. (s = 3 for meshes of triangles and s = 4 for
meshes of quadrilaterals) differ from the same quantities computed
from the entire original mesh?

3) What is the robustness index for the various estimators?

We will consider the interior-patterns (cell/patch combinations) shown
in Figs. 7 and 6 which occur in the meshes shown in Figs. 1 and 3,
respectively.

For the scalar elliptic problem we chose the exact solution to be either
a general (homogeneous) polynomial of degree (p + 1)
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QG(xl,x 2)= -aijxar 2 , ixj =p+ l, i,j>0 (43)

2,3

2

or a "harmonic" polynomial by imposing the constraint E Dk(KkeDeQH)
k,t=1

= 0; for example for Kke =bk we have

QH(Xl, x 2) = a - x) + a 2 x1 x 2 , for p + 1 = 2 (44a)

and

QH(X1 , x2)= a(x - 3xx) + a2(3x2x 2 - x), for p+1-=-3 (44b)

In the case of the vector-valued model problem (linear elasticity) we em-
ployed homogeneous "harmonic" polynomial solutions of degree (p + 1)

2
QH C ()Pv+ 1 )2 : Dj (uij(QH)) = 0, i= 1,2 (45)

j=1

We determined the robustness index of the error estimators for the
cells woh using the approach of the paper. In Table 1 we give the values

of C, C0 , T0Zh for Est. 1 for the scalar elliptic problem with p = 1,
for the pattern 1 (shown in Fig. 6a), when s = 1, 2, 3, 4, 5 layers of
elements around wh are taken in the patch wh (see Fig. 8). In Tables 2

and 3 we give the values of CLO, CujO, and lZ'.h (s = 3 for the meshes of

triangles and s = 4 for the meshes of quadrilaterals) for the Est. 1, Est. 2,
and Est. 3 for the scalar elliptic problem with p = 1 and 2 respectively.

These are compared with the values of the effectivity indices CO'L, 1u

and 1? (7A is obtained by substituting C0h, Cu°h into (5a)) obtained from
the finite-element solution of a Dirichlet boundary-value problem using
the grids shown in Figs. 1, 3 (the big mesh) with data consistent with the

homogeneous polynomial solutions which give the extremal values CLj,

Cu6 of the effectivity index cwoh in the periodic super-patch calculations.
The periodic super-patches employed for the various patterns were con-
structed using a mesh-generator, as shown in Fig. 4. In Table 4 a similar
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comparison is made for isotropic elasticity (Poisson's ratio v = 0.3) using
meshes of triangles.

From the reported data we can make the following conclusions related
to the questions formulated above:

1) For linear elements the values of CLch, CuO, Z,0h in the cell wo, do not
practically change when the patch w h has s > 3 layers of elements
around the cell w0h. For higher order elements, a smaller s can be
taken, i.e. s = 1-2 (thus for our numerical experiments, we consid-
ered patches with s = 3 for the meshes of triangles and s = 4 for
the meshes of quadrilaterals).

2) For a given exact solution which is a homogeneous polynomial (har-
h h

monic or general) of degree (p + 1) the values of CL6, Cu6, obtained

from a periodic super-patch are very close to the values C0?, 0C6 ob-
tained from the approximate solution of a boundary-value problem
(with data compatible with the polynomial solutions which corre-
spond to the extrema of the effectivity index in the periodic super-
patch) obtained using the big mesh. Note that we did not exactly
answer question 2 because we did not perform the optimization in
the big mesh; however the numerical experience from [16] indicates

that OL, 1 O° are very close to the extremal values of the effectivity
index when the optimization is performed in the big mesh.

3a) The element-residual without equilibration (Est. 1) is not robust for
the general meshes (like the meshes shown in Fig. 1 and Fig. 3) and
should not be used.

3b) The equilibration of the flux increases significantly the robustness
of the element-residual estimators.

3c) The Z-Z estimator appears to be the most robust.

6.2 The robustness index for general solutions

In Section 6.1 above, we assumed that the exact solution is a (homoge-
neous) polynomial of degree (p + 1). The following question arises:

Are the conclusions based on the assumption that the solution is a
polynomial valid for general solutions?
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We now give an example which shows that the results on the robust-
ness of estimators obtained using polynomials of degree (p + 1) give a
good indication of the local performance of the estimators for any general
solution (it is assumed that the mesh is sufficiently refined near singular
points so that global modes of the error (pollution-error) are controlled;
see [16], [18] for the details). Let us consider the general solution

u(xl,x 2) = (ri(xix 2)) sin(3-O0(xI, x 2)) + (r 2(x1, x2)) sin( 2o2(x1, x 2))

where

ri(xi, X2 ) = [(x_ - 1)2 + (x 2 - 3)2] Oi(x1, x 2 )= tan-' x 2 -3)
-2

r 2 (Xl, X 2 ) = [(xi - 3)2 + (x 2 - 2)2] 2 02 (X1, X2 )= tan-(2 x, -- 3/

we let Q = (0, 1) x (0, 1) and let Th be the grid shown in Fig. 6. We solved
the Neumann boundary-value problem in Q using Th (the big mesh) and
data consistent with the exact solution given above and we computed the
effectivity index for Est. 1, Est. 2 and Est. 3 for five of the patterns shown
in Fig. 6. We also computed the effectivity index in the cells wh by:

a) Solving the Neumann problem in Q using the grid Th with data
corresponding to the local Taylor-expansion (up to quadratic degree)
about the central node X of the cell - wx.

b) By using the local Taylor-expansion (about the central node of the
patch) as exact solution in the periodic boundary-value problem (37)
over the periodic super-patches for the patterns shown in Figs. 6a-6e
(patterns 1-5).

The effectivity indices for the cells calculated from the approximate solu-
tion (which was obtained using the three different ways stated above) are
given in Table 5.

We observe that the effectivity indices obtained using the approximate
solution (computed from the big mesh Th) of the Neumann boundary-value
problem formulated using data obtained either from the general solution
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or from its local Taylor series expansion are essentially identical. The
results obtained using the local Taylor series expansion and the periodic
boundary-value problem (37) are also very close to the values obtained
from the other two types of problems; still better agreement could be
obtained by increasing the number of layers s in w.' (here we have used
s = 3 layers).

7. Summary of conclusions
1. The validation of the performance of the estimators based on the

robustness index allows objective comparisons between the various
error estimators.

2. A numerical methodology for computing the robustness index is
given.

3. The methodology takes directly into account the factors which affect
the performance of estimators namely the geometry of the grid, the
differential operator and the nature of the solution. The method-
ology has theoretical basis (see [16]) and can be used to study the
robustness of error estimators for the complex grids which are used
in engineering computations.

4. The methodology allows one to check the quality of any new estima-
tor even if it is only available as a black-box computer subroutine.

5. It is possible to use the methodology to maximize the robustness of
a given estimator for a class of meshes of interest.

6. The methodology addresses the robustness index for the estimators
for elements in the interior of the domain and smooth solutions.
The case of unsmooth solutions and elements at the boundary will
be addressed in a forthcoming paper.

7. The Z-Z estimator seems to be the most robust and is rather insen-
sitive to the selection at the sampling points (see also [17]).

8. The element residual estimators should be used only with equilibra-
tion.

We remark that the conclusions made above are related to the use of
general meshes. Use of families of particular meshes could influence the
conclusions.
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Laplace's Equation, Linear Triangles

Element residual without equilibration (Est. 1)

Periodic Problem
No. of layers, s Cho

1 1.084 1.312 0.396
2 1.079 1.297 0.376
3 1.080 1.327 0.407
4 1.080 1.317 0.397
5 1.080 1.312 0.392

1h

Table 1. Influence of the size of the patch wh on the value of the
robustness-index T~h obtained from the periodic super-patch. Laplace's
equation, quadratic harmonic polynomial solution, linear elements (p =
1). Pattern 1 (shown in Fig. 6a) with s = 1, 2, 3, 4, 5 layers around
the cell woh (as shown in Fig. 5) is employed in the computation of the
robustness for Est. 1.
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Laplace's Equation, Linear Triangles

Pattern÷ Periodic Problem Dirichlet BVP
Element residual without equilibration (Est. 1)

CLh Cu ý h CL Gu 1

1 1.080 1.312 0.392 1.080 1.308 0.388
2 1.041 1.418 0.459 1.028 1.413 0.441
3 0.998 1.011 0.013 0.999 1.014 0.015
4 0.996 1.128 0.132 0.983 1.116 0.133
5 0.960 1.701 0.741 0.954 1.701 0.747

Element residual with equilibration (Est. 2)
(Ladeveze's equilibration, eq. (32))

1 0.993 0.999 0.008 0.986 0.999 0.015
2 0.999 1.003 0.004 0.977 0.999 0.025
3 0.989 1.026 0.037 0.991 1.030 0.039
4 0.980 1.016 0.036 0.963 1.010 0.048
5 0.923 1.069 0.148 0.916 1.070 0.157
6 0.913 0.993 0.102 0.917 0.999 0.092
7 0.999 1.001 0.002 0.999 1.001 0.002

ZZ estimator (Est. 3)

1 1.004 1.012 0.016 1.004 1.005 0.009
2 0.995 1.035 0.040 0.992 1.021 0.029
3 0.989 0.994 0.015 0.993 0.995 0.012
4 0.958 1.005 0.049 0.941 0.999 0.064
5 0.982 1.013 0.031 0.978 1.010 0.032
6 0.926 0.998 0.082 0.930 1.004 0.079
7 0.979 1.005 0.026 0.979 1.005 0.026

Table 2a. Accuracy of the methodology for general meshes: Laplace's
equation, quadratic harmonic polynomial solution, linear elements (p =
1). The mesh of triangles shown in Fig. 3 and the patterns 1-7 shown in
Figs. 6a-6g are employed in the computation of the robustness.
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Laplace's Equation, Bilinear Quadrilaterals

Element residual without equilibration (Est. 1)
Periodic Problem Dirichlet BVP

Pattern CL Cu 10h h h -Uh

1 1.096 1.323 0.420 1.113 1.298 0.412
2 1.051 1.577 0.628 1.053 1.561 0.616
3 1.114 1.882 0.996 1.131 1.896 1.027
4 1.218 2.240 1.458 1.189 2.261 1.450
5 1.340 2.210 1.550 1.298 2.224 1.524

Element residual with equilibration (Est. 2)
(Bank & Weiser equilibration, eq. (30))

1 0.819 0.978 0.243 0.813 0.979 0.251
2 0.833 0.999 0.201 0.852 1.011 0.185
3 0.776 0.979 0.310 0.784 0.988 0.288
4 0.731 0.953 0.417 0.749 0.976 0.360
5 0.702 0.947 0.480 0.715 0.965 0.435

ZZ estimator (Est. 3)

1 1.010 1.022 0.032 1.011 1.029 0.040
2 1.008 1.017 0.025 1.008 1.018 0.026
3 0.991 1.033 0.042 0.998 1.033 0.035
4 0.978 1.016 0.038 0.980 1.014 0.034
5 0.938 0.999 0.067 0.940 1.001 0.065

Table 2b. Accuracy of the methodology for general meshes: Laplace's
equation, quadratic harmonic polynomial solution, linear elements (p =
1). The mesh of quadrilaterals shown in Fig. 1 and the patterns 1-5 shown
in Figs. 7a-7e are employed in the computation of the robustness.

395



Laplace's Equation, Quadratic Triangles

Element residual with equilibration (Est. 2)
(Ladeveze's equilibration, eq. (32))

Periodic Problem Dirichlet BVP
Pattern C0 C 3h C0 C1h

1 0.960 1.032 0.073 0.960 1.032 0.073
2 0.982 1.009 0.027 0.978 1.008 0.030
3 1.011 1.021 0.032 1.010 1.021 0.032
4 0.973 1.011 0.039 0.973 1.011 0.039
5 0.718 0.894 0.511 0.718 0.894 0.511
6 0.806 1.035 0.275 0.811 1.035 0.267
7 0.998 1.007 0.009 0.997 1.006 0.009

ZZ estimator (Est. 3)
Periodic Problem Dirichlet BVP

Pattern C°h CUh 3 - h

1 0.969 0.995 0.037 0.969 0.995 0.037
2 0.919 0.935 0.158 0.915 0.933 0.165
3 1.001 1.060 0.061 1.001 1.060 0.061
4 1.006 1.044 0.050 1.005 1.043 0.048
5 0.875 0.933 0.215 0.875 0.933 0.215
6 0.854 0.923 0.254 0.854 0.923 0.254
7 0.978 0.979 0.044 0.977 0.979 0.045

Table 3. Accuracy of the methodology for general meshes: Laplace's
equation, cubic harmonic polynomial solution, quadratic elements (p = 2).
The mesh of triangles shown in Fig. 3 and the patterns 1-7 shown in
Figs. 6a-6g are employed in the computation of the robustness.
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Isotropic Elasticity, Linear Triangles

Element residual with equilibration (Est. 2)
(Ladeveze's equilibration, eq. (32))

Periodic Problem Dirichlet BVP
Pattern CL Cu°I- hh

1 0.965 1.033 0.068 0.949 1.000 0.054
3 0.959 1.049 0.090 0.951 1.048 0.097
4 0.875 1.037 0.179 0.899 1.005 0.117
5 0.853 1.195 0.342 0.856 1.190 0.334

ZZ estimator (Est. 3)
Periodic Problem Dirichlet BVP

Pattern Ch Cu T/Zoh h h -

1 0.992 1.054 0.062 0.992 1.027 0.035
3 0.943 1.004 0.064 0.955 1.004 0.051
4 0.944 1.002 0.061 0.931 0.997 0.077
5 0.948 1.043 0.096 0.946 1.002 0.059

Table 4. Accuracy of the methodology for general meshes: Isotropic
elasticity, quadratic "harmonic" polynomial solution, linear elements (p =
1). The mesh of triangles shown in Fig. 3 and the patterns 1, 3, 4, 5 shown
in Figs. 6a, c, d, e are employed in the computation of the robustness.
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Laplace's Equation, Linear Triangles

Neumann BVP Periodic Problem

Pattern General solution Taylor series Taylor series

(Est. 1) (Est. 2) (Est. 3) (Est. 1) (Est. 2) (Et. 3) (Est. 1) (Est. 2) (Est. 3)

1 1.219 0.993 1.006 1.220 0.993 1.006 1.228 0.999 1.013
2 1.293 0.995 1.006 1.293 0.995 1.006 1.298 0.998 1.009
3 1.007 1.015 0.992 1.007 1.015 0.992 1.006 1.014 0.991
4 1.085 1.003 0.990 1.086 1.003 0.991 1.098 1.015 1.003
5 1.316 1.031 0.983 1.317 1.031 0.983 1.316 1.034 0.987

Table 5. Applicability of the methodology for general solutions: Laplace's
equation, harmonic solution, linear elements (p = 1). Comparison of the
values of the effectivity index for the cells computed using three different
approximate solutions: The solution of a Neumann boundary-value prob-
lem in the domain and mesh shown in Fig. 3 with the data taken from the
exact solution (Columns 2, 3, 4); the solution of a Neumann boundary-
value problem in the domain and mesh shown in Fig. 3 with the data taken
from the quadratic Taylor-series expansion about the central-node of the
mesh-cell wo for which the effectivity index is computed (Columns 5, 6,
7); the solution of a periodic boundary-value problem in super-patches
which include the patches shown in Figs. 6a-6e with the data taken from
the quadratic Taylor-series expansion about the central node of each of
the mesh-cells (Columns 8, 9, 10).
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Figure 1. The mesh-cell wo (dark gray) and the surrounding layers of
elements (light gray) which influence the error (and the error-estimator)
in w6.
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Figure 3. Typical example of a general finite-element grid of triangles
generated by a commercial mesh-generator.
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Figure 4. Extraction of a patch and completion to a periodic super-patch for

meshes of triangles and quadrilaterals (a) The actual grid of triangles with the
subdomains oh, wh", (b) The subdomain wh (s = 3) with wh in its interior; (c)

The subdomain wh embedded into a periodic super-patch; (d) The actual grid of
quadrilaterals with the subdomains wo, wc (s = 4); (e) The subdomain w, with W0

in its interior; (f) The subdomain wh embedded into a periodic super-patch.
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Figure 5. Influence of the size of the patch wh on the calculation of the
robustness-index R h: The cell w0h (shown without shading) surrounded
by several mesh-layers (indicated by various tones of gray shading).
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Figure 6. General mesh of triangles generated by a commercial mesh-generator
(shown in Fig. 3): (a)-(g) Cell/patch combinations (patterns) 1-7. The cell Wh is
shaded gray; the perigram of the patch wh (s = 3) is shown in thick black line.
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Figure 7. General unstructured mesh of quadrilaterals (shown in Fig. 1): Cell/
patch combinations (patterns) used in the study of the robustness index for the
various estimators. The cell woh consists of: (a) 3 elements, (b) 4 elements, (c) 6
elements, (d) 7 elements, (e) 8 elements connected to a node. The cell w h is shaded
gray; the perigram of the patch co (s = 4) is shown in thick black line.
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Toward the Application of an Adaptive Finite Element Method
to the Simulation of Adiabatic Shear Bands

John W.Walter Jr.
U. S. Army Research Laboratory
Weapons Technology Directorate

Aberdeen Proving Ground, Maryland 21005-5066

1 Introduction

Adiabatic shear band formation is one of several material damage
mechanisms known to be critical to the performance of armor/anti-
armor systems under conditions of ballistic impact. Previous experience
with a non-adaptive finite element method [1] has shown that extremely
large strains (,y 1), strain rates (j= 106/s) and temperatures
(T= Tme•t) may occur during shear band formation. Moreover, even for
the unidirectional and one-dimensional simple shearing problem consid-
ered therein, neither the severity nor the position of localization gener-
ally could be predicted in advance. These difficulties imposed
unacceptable limits on the range of problems which could be simulated
as well as raising questions of accuracy for those which were simulated.
Similar difficulties are likely to ensue whenever one desires accurate
simulations involving material models which exhibit strain softening,
e.g., models for high rate granular flows.

This paper documents some first steps in an attempt to resolve
these computational difficulties by employing an adaptive, finite element
method-of-lines (MOL) code, MFEHP1 [2], generously provided to the
author by Professor J. Flaherty and Dr. Y. Wang of the Scientific Compu-
tation Research Center at Rensselaer Polytechnic Institute. The general
form of the system of quasi-linear partial differential equations (PDEs)
amenable to solution by MFEHP1 is

M(x,t)ut+f(x,t,u, ux) = (D(x,t,u)ux)x, a<x<b, t>to, (1)
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where u = { u1, ... , ua}, M and D are (aL x a•) matrices and (1) is para-
bolic when both are positive-definite.

The adaptive strategies and algorithms in MFEHP1 were devel-
oped for, and work well for, a variety of such parabolic systems (both
regular and singularly perturbed) [2-5]. However, for application to adia-
batic shear band simulation MFEHP1's problem class must be broad-
ened to include matrices Mand Dwhich are singular. In particular, when
M is singular (1) may contain both differential and algebraic equations
with respect to time. This is significant because material models for solid
dynamics problems are often stated most naturally in this form. For
example, the flow law in rate-dependent thermo-visco-plasticity is an
algebraic equation constraining the current values of stress, strain rate,
temperature and hardening parameters.

Since MFEHP1 employs a MOL approach, its core spatial finite
element discretization and time integration algorithms are decoupled so
that in principle it may be applied to non-parabolic systems with little
modification. Of course it is not reasonable to expect that adaptive strat-
egies which were designed for strictly parabolic systems would work
equally well for systems of mixed hyperbolic-parabolic type with embed-
ded algebraic equations as considered here. Hence, our purpose is to
explore the feasibility of this approach and identify algorithmic problems
whose resolution will be reported subsequently.

2 Summary of Numerical Method

2.1 Spatial Discretization

MFEHP1 employs a finite element discretization of the form
N N P1

U(x, t) X Bj(t)0j,1 (x) + X Cj,,(t)0j,,(x) (2)
j=O j=1 i=2

in which O., are node-based shape functions and oj, are hierarchical,
element-based shape functions [6], termed "hat" and "bubble" functions
respectively. The latter are given by j i (x) = 0i (j (x)) in which ýj lin-
early maps the field element Q, = [xj_ 1 (t), xj (t) ] onto the master ele-
ment C = [-1, 1] and 0i is given in terms of Legendre polynomials by

(Pi(a) -P -2(•)) (3)
= 2 (2i- 1)
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Figure 1 Shape functions defined at the ith node and element.

MFEHP1 admits three different adaptive mechanisms which may be
employed separately or in concert at the user's discretion.

1. Mesh motion (r-method) in which the position of the nodes var-
ies continuously with time as indicated by x, = x, (t) .

2. Spatial refinement/coarsening (h-method) in which individual
elements are subdivided or merged with adjacent elements.

3. Spectral refinement/coarsening (p-method) in which the poly-
nomial order p1 of each element is varied independently.

Discrete equations for the finite element degrees of freedom
B1 (t), C11 (t) are obtained from a symmetric weak formulation of (1) s0
that (2) is used for both trial and test functions. Except for the presence
of several extra flux terms which appear due to the moving mesh, these
are of fairly standard form and will not be reproduced here.

The weak formulation does not provide discrete equations for the
motion of the mesh x((t). Instead, mesh motion equations are embod-
ied in an algorithm to approximately equidistribute a (non-negative) indi-
cator function do (x, t) whose value depends both on the numerical
solution and the local mesh geometry. An exactly equidistributing mesh
would satisfy

mo(t)o of the mesh xjt). InsWtead =es N m o t)o eqaton j r = embod-N.(4

x.

Xj_1 b
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Rather than solve (4) directly, MFEHP1 employs a related differential
system [2] (a superposed dot indicates time differentiation)

• •j+ -2ýj +,'j-i = -- - (Wj+l - Wj), j = 1, ... , N- 1, (5)

in which W has been eliminated to preserve bandedness. The mesh
relaxation parameter X can also be adaptively controlled so as to main-
tain a goodness-of-equidistribution measure within a user-specified
interval.

The adaptive algorithms currently implemented in MFEHP1 are
based upon a posteriori error estimates for linear parabolic problems
[2,4]. The error is interpolated by the highest order "bubble" function

N

E(x, t) = Cj, pj(t)0j, p, (x) (6)
j=1

with the lower order terms in (2) interpolating the solution proper. The
scalar error estimates (or indicators) are the elemental and global H1-
norms of E

Wj(t) = IJEJI~11 -= (E -E+ E, E.,)dx 11 Ell, IEI~ 1 (7)
j=l

The global strategy is to adapt the mesh upon failure of the inequality

TOL < II EII < TOL. (8)
10 -

The solution is transferred from the old mesh to the new by an HI-norm
projection.

2.2 Temporal Integration

Application of the above FEM in space yields a system of nonlinear
equations for

Y(t) = {xj (t), Bj (t), Cj, i(t) I N, pj (9)
,i= 1,2

of the form

G(t, Y, Y') = 0. (10)

For the rate-dependent visco-plastic shear band problem considered
below Min (1) is singular so that (10) will generally be an index-one sys-
tem of Differential/Algebraic Equations (DAEs)l for which special inte-

410



gration methods are required. MFEHP1 uses the code DASSL [8] which
implements a DAE-form of the backward difference formulae with auto-
matic adaptation of time step and method order to satisfy a stepwise
error tolerance which is scaled by the spatial tolerance, TOL.

DASSL is robust for systems of index zero and index one modulo
consistent initialization. That is, in addition to the initial vector Yo,
DASSL also requires a vector of initial rates Y6 which together must
approximately satisfy G (t0, Yo, Y' ) = 0. The need to supply Y6 in the
index-one case is non-trivial because initial data for (1),
u(x, to) = uo (x), contain information sufficient only to specify Yo in
(10). In the current context this may be seen by observing that because
(1) is linear in ut, (10) is linear in Y' so that

aG
0 = G(to, Yo, 0 )+ +--G(to, YO,0) . (11)

When (10) is index-one (aG/lY')o is singular and (11) cannot be
solved for YO , as would be possible if (10) were index-zero. DASSL's
current initialization algorithm can handle some problems with mildly
inconsistent initial data but more robust initialization methods are
needed. Fortunately, a consistent initialization algorithm for a substan-
tial class of DAEs has recently been devised [9]; implementation in
DASSL is currently underway [10].

3 Simulation of a Parabolic Test Problem

Some algorithmic modifications and recoding of MFEHP1 were per-
formed by the author toward its application to shear band problems. To
verify that MFEHP1 continues to function properly on its original prob-
lem class and illustrate the adaptive behavior desired for shear bands,
consider the following parabolic test problem (example 3.2 in [11]).

Problem 1 Modified heat equation with Dirichlet data.
ut + ux - Uxx = (X, 0), 0 < x < 1 , t > O,

u(x,0) = Uo(X), 0<x1, (12)

u(0, t) = co(t), u(1, t) = c1 (t), t_>0,

1. The index of system (10) is the least number of times that any of the Gk must be
differentiated with respect to t in order to obtain a purely differential (index zero) sys-
tem. In particular, if D G/lY' is singular then the index of (10) is one or more.
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where co, cl, uo and fare selected so that the exact solution is

u (x, t) = {1 - tanh [C1 (x- C2 t- C3 )]}/2; (13)

a wave front moving to the right at speed C2. Figure 2 shows an r-

T T

0.8 1

0.6 0.8

0.4 
0

0.4
0.2 0.2_

I-. . .X h-X
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Figure 2 Mesh history for r-method Figure 3 Mesh history for h-method
solution of Problem 1 with C2 = 10. solution of Problem 1 with C2 = 25.

method simulation of this problem (with C, = 10, C2 = 1, C3 = 0.4)
using a mesh of N = 19 quadratic elements (i.e., p, = 2 in (2), (6)) and
TOL = 0.12. Note that the mesh trajectories are smooth and non-oscilla-
tory as expected since the mesh motion equations (4), (5) are infinitesi-
mally stability [7]; agreement with results in [11] is excellent. Figure 3
shows an h-method simulation of the same problem (with C, = 25,
C2 = 1, C3 = 0.1) using a cubic mesh with 28 < N< 61 elements and
TOL = 0.005. Shortly after start-up the number of elements stabilizes
(near 60) until the wave exits the domain near t = 1. This is as
expected since the shape of the wave does not change. The mesh is
refined near the wave's leading edge and coarsened on the trailing
edge in a smooth manner. Although not shown, the maximum elemental
errors are maintained in a narrow range near TOL = TOL/,JN on the
wavefront.

4 Shear Band Simulations

Here we attempt adaptive simulation of two of the 1-D simple shear
problems considered previously on a non-uniform fixed mesh [1]; details
concerning motivation and formulation appear therein.

Problem 2 Consider the unidirectional, simple shearing of a slab of
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perfectly-plastic material with a Litonski-type flow law. The boundaries
x = ± 1 are thermally insulated and driven at fixed speed. A tempera-
ture perturbation (symmetric about x = 0) is introduced at to = 0 to ini-
tiate localization. In view of the problem's symmetry, the dimensionless
field equations, side conditions and material parameters are,

vt =Sx/p, ot = kexxSix,Vt S/ , t= kXX+ V 0 <x<l, t> 0, (14)
s = sgn (Vx) (1 + bj Vxl) rne-ae,

v(0, t) = 0, v(1, t) = 1,

OX(0,t) = 0, OX(1,t) = 0,

v(x,O) =x, s(x,O) = (1 +bm) ea(x), 1 (16)
e(X, 0) = 0.1 (1 -X2)9ge-5X2,

p = 3.93x10-5, k = 2.20x10- 1, (17)

a = 1.04x10- 1, b = 5xl 07, m = 2.51 x, 0-2

where v, 0, s are, respectively, the velocity, temperature and stress. The
material parameters (17) are appropriate for a moderate-strength steel
deforming at a nominal shear rate of 500 s-1 (corresponding to vx = 1 )
except that the value of k has been increased by a factor of 100 to
reduce the severity of localization.

VX VX

6 3 7.51

_ 2
0.25 1 T 00.25 05 T

0.5 0.5
X 0.75 X 0.7,5

Figure 4 vx for Problem 2 computed on Figure 5 vx for Problem 2 computed on
a uniform, non-adaptive mesh (p1 = 2). an r-method adaptive mesh (p1 = 2).

Figure 4 shows the velocity gradient, vx, for a uniform-mesh simu-
lation of Problem 2; this result agrees qualitatively with those in [1]. Fig-
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Figure 6 Estimated elemental errors Figure 7 Mesh trajectories for case of

for case of Figure 5 near t = tf. Figure 5 near t = tf.

ures 5-7 contain results for an r-method simulation which behaved well
until failing suddenly at tf= 1.36 due to convergence of nodes two and
three. The failure appears to be caused by deterioration of the error esti-
mate (and the solution itself) rather than instability of the mesh motion
equations, because the mesh trajectories, Figure 7, are appropriate for
the computed evolution of elemental errors, Figure 6. Use of an alterna-
tive error estimate (which accounts for inter-element errors ignored by
(5)) did not produce significant improvement. Some improvement was
obtained by adding to (5) a term penalizing very short elements but such
an approach is ad hoc and does not resolve the underlying difficulty.

Successful simulation of this problem on a fixed mesh suggests
that the r-method failure may have occurred because the mesh motion-
related fluxes were discretized in a manner inappropriate for the shear
band equations. This possibility is explored by considering a variant of
Problem 2 with a strain-hardening material model and simulation by the
h-method.

Problem 3 Simple shearing of a slab of rigid, strain-hardening material
with the Johnson-Cook flow law [12]. The domain and balance laws are
as in Problem 2. The flow law (14)3 is replaced by

s = sgn(vx) (1 + on) (1 +mlog(Ibv,)) (1 - (aO)P), (18)

where the total strain y evolves according to Tt= jv , while the side
conditions are given by

v(O, t) = 0, v(1, t) = 1, OX(O, t) = 0, 0 (1, t) = 0,

v(x,0) = x, e(x,0) = 0, 7,(x,0) = 0, s(x,0) =.
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Material parameters appropriate for OFHC Copper deforming at a nom-
inal shear rate of 330 s-1 are

p = 3.56x10- 5, k = 1.34x10- 1,

a= 1.89xl 0-2, b = 3.3x 10', m = 2.5xl 0- 2 , (20)

n = 3.1 x10- 1, V = 3.25, p = 1.09.

1Ell, 0.8
1 0.6

S0.8 0.4
10 1 0.6 0.2 N=20

1 0.4 0 2 4 6 8 10 12 14 T

00 10T 0.406 0.2 N=4

0.25 0. 0 2 4 6 8 10 12 14 T
0.5 0.2

X 5 0.75N = 80
10 2 4 6 8 10 12 14 T

Figure 8 vx for Problem 3 computed on Figure 9 Evolution of estimated global
a uniform, non-adaptive mesh of 20 error for uniform mesh-simulations of
elements (p, = 3). Problem 3 with 20, 40 and 80 elements

(pj = 3).

In contrast with Problem 2, localization occurs here by diffusion of
the thermal boundary layer at x = 1. Because of the low strength and
high diffusivity of Copper this problem may be simulated on a fixed-
mesh without modification of the material parameters. The vx surface in
Figure 8 shows the same complex history observed previously [1].
Figure 9 illustrates that, at least for uniform meshes, the global error
estimate appears to converge at roughly a quadratic rate. Examination
of the vx and temperature surfaces for the other uniform meshes (not
shown) confirms convergence.

A portion of the vx surface for an h-method simulation of
Problem 3 is shown in Figure 10. The initial mesh was uniform with 30
cubic elements but because the solution is smooth for small t the mesh
was coarsened to N = 8 before refinement began at t_= 4. At t = 5 (on
the back edge of Figure 10) N = 42 and by t=7, N = 156. In contrast
with Problem 2, the simulated solution appears to be good in this case
although the mesh is clearly being over-refined. Referring to Figure 11,
the arrows indicate unacceptably large increases in the global error esti-
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mate at each mesh adaptation. These increases evidently occur
because the elemental error estimate is converging much less rapidly
with refinement than would be expected in view of Figure 9; to what
extent the estimate is indicative of the exact error is presently not
known.This behavior may be due in part to the fact that the shear band
solutions often tend to localize "in place" rather than to involve moving
wavefronts typical of many of the parabolic problems to which MFEHP1
has been applied. The post-adaptation decay in II ElI1 suggests that
some of the refinement-induced increase in the estimate may be due to
insufficient accuracy in transferring the solution from the old to new
meshes, although a high-order projection was used. It is also likely that
better refinement behavior could be obtained by modifying the algorithm
which calculates the density of elements in the new mesh, as it is cur-
rently based on error convergence rates for linear parabolic
systems.

,4

;3

'2
5

5.51

T 6.5• 0.1

7 0.2 X

7.5

Figure 10 vx for Problem 3 computed on an initially uniform, h-adaptive mesh. The
sub-domain shown (0•5 x< 0.3, 5 _< t< 7.25) corresponds to the first peak in Figure 8
(pj = 3).
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Figure 11 Evolution of the global estimated error for the case of Figure 10.

5 Discussion

Clearly, much remains to be done before adaptive algorithms of the sort
considered here can attain their potential performance when applied to
adiabatic shear band problems. A first step toward this end is to quantify
the behavior of the error indicator (6), (7) for relevant problems and
implement a different indicator if necessary. To obtain acceptable perfor-
mance it is not essential that the effectivity 2 remain very close to unity
but it cannot deviate arbitrarily far from that value. The error indicator
can be examined through a combination of the following sorts of numer-
ical experiments.

1. Programmed solutions. If the exact solution to a problem is
known, MFEHP1 uses it to compute the exact error and the
effectivity of the error estimate. Running problems with shear
band-like programmed solutions for both a simple parabolic
system and for an actual shear band system such as
Problem 2 will help clarify the exact nature of MFEHP1's diffi-
culties with shear band simulation.

2. Benchmarking and basic convergence study. It is possible for
the programmed solution approach to produce misleading
results because such solutions may be different than those
which the equations would admit with "usual" data. Thus, solu-
tions should also be generated on non-adaptive, and when

2. The effectivity index is defined as II Ell /11 ell where e is the exact error.
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possible uniform, meshes to obtain h, p convergence rates and
benchmark solutions to be compared with adaptive solutions.

Lastly, it should be observed that adaptive strategies which do not
depend on error estimates are possible. In general, an adaptive algo-
rithm could attempt to approximately equidistribute the integral of any
positive quantity related to the solution as in (4). However, such
approaches are necessarily problem-specific and the connection
between the quality of the' solution and the adaptation is lost.
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SUMMARY

An explicit, lagrangian, elastic-plastic, finite element code has
been modified to accommodate chip separation, segmentation, and
interaction in modeling of continuous and segmented chip formation
in high speed orthogonal metal cutting process. A fracture algorithm
is implemented that simulates the separation of the chip from the
workpiece and the simultaneous breakage of the chip into multiple
segments. The path of chip separation and breakage is not assigned
in advance but rather controlled by the state of stress and strain
induced by tool penetration. A special contact algorithm is developed
that automatically updates newly created surfaces as a result of chip
separation and breakage and flags them as contact surfaces. This
allows for simulation of contact between tool and newly created
surfaces as well as contact between simulated chip segments. The
work material is modeled as elastic perfectly plastic and the entire
cutting process from initial tool workpiece contact to final separation of
chip from workpiece is simulated. In this paper, the results of the
numerical simulation of continuous and segmented chip formation in
orthogonal metal cutting of material are presented in the form of chip
geometry, stress, and strain contours in the critical regions.
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INTRODUCTION

The importance of the cutting process may be realized by the
observation that nearly every device in use in our society has one or
more machined surfaces or holes. In the USA, the yearly cost
associated with material removal tasks has been estimated at about
10 percent of the gross national product. There are several reasons
for developing a rationale approach to material removal such as
improving cutting techniques, producing products with enhanced
precision, and increasing the rate of production, Shaw (1984). The
economics of the cutting process has made this area one of
paramount importance from both a technical and an engineering
economics point of view.

Attempts in understanding the mechanics of metal cutting
process dates back to the work performed by Cocquilhat (1851),
when he measured the work required to remove a portion of material
by drilling. Other significant research investigations in the general
area of metal cutting were performed by Time (1870), Treska (1873),
Taylor (1906), Piispanen (1948), Ernst and Merchant (1941), and Lee
and Schaffer (1951). These investigators attempted to develop a
model (empirical or analytical) that predicted important machining
parameters such shear plane angle. However, none of the proposed
models generated consistent satisfactory results.

With the introduction of finite element techniques, many
attempts have been made to model the metal cutting process through
utilization of this method. One of the important goals has been to
model the formation of the chip as the material is removed from the
surface of the workpiece and to determine the subsequent state of
deformation in the workpiece as well as the chip material. Klamecki's
work (1973) is the first example of such effort. Klamecki used a three-
dimensional formulation to treat the incipient chip formation process.
Usui and Shirakashi (1982) developed a model based on empirical
data for rate independent behavior. The model was suitable for
steady state cutting conditions. Iwata, Osakada, and Terasaka (1984)
simulated low speed metal cutting process based on a rigid-plastic
constitutive law. The residual stresses could not be determined due
to the rigid-plastic deformation behavior. Thus far, the most realistic
simulations, (all plane strain simulations), have been performed by
Strenkowski and Carrol (1983), Carrol and Strenkowski (1988), and
most recently, Komvopoulos and Erpenbeck (1991). Strenkowski and
Carrol used the Lagrangian NIKE2D code to model orthogonal metal
cutting process. They simulated the formation of a continuous chip in
the steady state condition and calculated the state of residual stresses
according to a temperature dependent constitutive model and
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adiabatic conditions. Severe distortion of the mesh due to large
deformation nature of the problem presented some difficulties by
reducing the integration time increment. This is a problem associated
with all Lagrangian codes used to simulate large deformation
problems where computationally expensive re-meshing techniques
must be used. It should be mentioned that a predetermined chip
separation path was utilized in Carrol's numerical scheme, i.e.,
whenever the tool reached the critical node on the separation path,
according to the state of plastic strain surrounding the node, the node
would split from the surface. The initial geometry of the chip material
was distorted. This modification was made to avoid simulation
complications as a result of high compressive deformations around
the tool-workpiece interface.

Carrol and Strenkowski used an identical procedure and a
similar constitutive equation while taking into account the effect of
strain rate. Most recently, Komvopoulous and Erpenbeck utilized the
finite element method to model chip formation in orthogonal metal
cutting. To simulate separation of the chip from the workpiece,
superposition of two nodes at each nodal location of a prearranged
parting line of the initial mesh was imposed. Simply stated, the nodes
on the parting line separated when the tool tip was in close,
predetermined, proximity of that node. Constitutive equations of
elastic-perfectly plastic and elastic-plastic with strain rate sensitivity
were used in different simulations. Tool material and built-up edge
(BUE) were modeled as rigid. The simulation was based on the
assumption that the chip had already partially formed. The reason for
that assumption, according to the authors, was to reduce the
computation time. The actual simulation shape of the chip material
was determined based on experimental results. The authors stated
that fair agreement between experimental and numerical results was
observed. It should be mentioned that their simulation included
effects of friction on chip-tool contact interface as well as tool wear at
the rake face. The above mentioned studies have all been related to
cases where continuous chips are formed and the objective has been
to gain a qualitative insight in some specific aspects of the machining
process. The modeling of the machining process where segmental
chips are formed has not appeared in the literature.

In summary, finite element simulation of metal machining
processes has been limited to continuous chips. In addition, most
studies do not utilize a systematic approach in modeling the complete
process from the initial tool work contact to the chip formation and
separation. For example, in some modeling attempts, the geometry of
the chip has been input to the code and the simulation has been
performed based on an already existing chip. Another shortcoming in
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recent machining simulations has been the unavailability of an
algorithm capable of simulating dynamic metal fracture, without the
use of a predetermined chip separation path, as the tool penetrates
the workpiece. This is specially important when simulating segmental
chip formation which requires an algorithm that can handle element
separation, new node creation, element reattachment, and finally
sliding surface insertion and modification. The latter of which, slide
line insertion and modification, is required to simulate the contact
between opposite surfaces of a crack as they interact. In this paper,
the theoretical formulation, related algorithms, and the simulation
results of a finite element scheme capable of simulating segmental
chip formation are presented.

NUMERICAL SCHEME

The formulation of the utilized code is based on the hydro-code
approach similar to that used by Chou et al (1991). In hydrocodes,
where the pressure involved is very high, the material can not be
simply considered as elastic-plastic. Material must be treated as a
compressible material and an equation of state relating the pressure,
density, and internal energy must be used in place of the elastic
spherical stress-strain relation. To facilitate this, the plastic
constitutive equations are expressed in terms of deviatoric stress and
strain. Another point is that the numerical procedure involves the
calculation of stress from the total strain rate, not the plastic strain rate,
at each time increment cycle. Therefore, a constitutive relation of
stress in terms of total strain rate is needed. In the numerical
calculations, at time t the deviator stress and strain rate components

are known, st+At is determined by first calculating a trial stress,
I.trl

st+At = si + 2GeiAt + wiAt, i= 1,2,...6 (1)
i.tri

The oi term represents the contribution due to element rotation. With

(00z = (Oor = 0, it can be shown that

(o1 = -2(y4 %

(04 = (Yl-(2)%

(03 (05 = 06=0 (2)
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For the Von Mises yield condition, we shall use the equivalent
stress, ;,

= S1++S2+$2 +3 (s2 +s52+s 2(3)

If a<cy, the material is elastic, and the trial stress is the correct stress
at time t+At. If •>ay the materials has yielded and a second trial
stress is calculated,

st+At = si + 2GeiAt - 2G(1-ox)Xsi + coiAt, i=1,2,...,6 (4)
i.tr2

where a is the percent of the stress increment inside the yield surface.

The stress deviator increment in this trial stress deviator, not
counting the rotational term, is

Asi = 2GeiAt - 2G?,si (5)

This is exactly the Prandtl-Reuss flow rule,

1
dei = dsi + Xsi (6)

Therefore, in using the trial stress in Eq. (4 ), we satisfied the von
Mises yield condition and the Prandtl-Reuss flow rule. However, due

to the finite increment in time, At, the resulting state of stress, even
though following a path tangent to the yield surface, may still fall

outside of it. To correct this, the final stress deviator at t+At is
obtained from Si,tr2 by

s!+At= sit - 7
1 atr2

where dtr2 is the equivalent stress calculated from st+At.
i.tr2
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SIMULATION RESULTS

The finite element code was applied in simulation of high speed
machining of materials with the goal of simulating segmental chips. A
plane strain simulation of orthogonal metal cutting processes at high
cutting speeds was performed. Figure 1 shows the initial geometry of
the simulation in which a cutting speed of 25 m/sec and a rake angle
of 100 were used. All surfaces were simulated as frictionless and the
cutting tool was modeled as rigid. A coarse finite element mesh was
utilized to minimize computational expense, however for more
accurate and realistic simulations a finer mesh has to be utilized. An
Elastic-perfectly plastic material constitutive equation was used to
simulate the workpiece material. No attempts were made to model a
specific material, however, the material constants used were that of
an aluminum alloy. The simulation was primarily intended to provide
numerical capability to model continuous and segmented chip
formation in high speed machining of metals. The fracture criterion
used for this simulation was based on the ultimate plastic strain of the
material.

Rake Angle, a x 100

Cutting Velocity = 2.5 m/sec 4 -

Figure 1. The initial geometry of the orthogonal cutting process. Plane
strain simulation.
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In the first trial, the geometry, boundary conditions, and the
cutting parameters were those outlined above. A fracture criterion
based on effective plastic strain was used with a critical value of 0.6.
Figures 2 through 6 show the results produced in the first trial. In
Figure 2(a), the initiation of the chipping process and the formation of
a shear zone which starts from the tool tip and ends at the free surface
is observed. Figure 2(b) shows the plastic region around the tool tip
at the corresponding computational cycle. The plastic region
(represented by "') approximately represents the shear plane. The
shearing stress contour of the segmented chip simulations, at the
stage corresponding, is presented in Figure 2(c). It shows that the
regions of high shear are located at the upper portion of the chip
where the shear stress is positive and just below the tool where it is
negative. The high shear contour in the chip material coincides with
the approximate location of the shear plane. Figure 2(d) shows the
distribution of the effective plastic strain. The same approximate
distribution of effective plastic strain exists at the later computational
cycles.

(a) (b)

0.69.
I '* 0.49

O.A38

-o.79

(C) (d)

Figure 2. The chip compression and separation stage; (a) Mesh
geometry, (b) Plastic zone, (c) Shear stress distribution, (d) Effective
plastic strain distribution.
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The first evidence of chip segmentation is observed in Figure
3(a) where the extensive shearing action on the chip material is
obvious. The segmentation of the chip is clearly shown in Figure 3(b)
in which a crack is initiated from the inner chip surface. It is important
to note that the contact between opposite sides of the cracks is
simulated adequately and no interpenetration of materials is
observed. Figures 4(a) represents a later stage of the cutting process
where the segmented chips are continuously forming and moving
away from the cutting tool at speeds higher than the cutting speed.
The results are in good qualitative agreement with those cases where
the chip material breaks due to brittle fracture, Figure 4(b).

(a) (hi

Figure 3. The development of the primary and secondary shear zone;
(a) Mesh geometry, (b) Plastic zone and formation of crack in the chip
material.
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Figure 4. Comparison of finite element simulation and experimental
observation of the chip formation process; (a) Code results, (b)
Experimental results.
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A second trial was prepared with the same geometry and

cutting conditions and a fracture criterion of 1.5 was used to simulate
continuous chip machining. Figures 5(a) through 5(d) show the

cutting geometry at different stages of the process.

(a) (o

(c) Cd)

Figure 5. Different stages of the cutting process associated with
continuous chip formation; (a) Initial compression of the chip material,
(b) Formation of the secondary shear zone , (c) Chip separation and
successive shearing of chip material entering the shear zone, (d)
Final stages of the cutting process.

(a) (bo)

Figure 6. Comparison of finite element simulation and experimental
observation of the chip formation process; (a) Code results, (b)
Experimental results.
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The comparison of experimental results of continuous chip formation
with the numerical simulation is presented in Figure 6. Figures 7(a)
through 7(c) present the results in determining the distribution of
effective plastic strain at different stages. These results show high
values of plastic strain at the chip along the tool face. The general
chip shape also agrees with the results given by Strenkowski and
others.

(a) ('0) (C)

Figure 7. Effective plastic strain contours at different cutting stages; (a)
Initial chip compression stage, (b) Chip separation stage, (c) The
steady state cutting stage showing both the location of primary and
secondary shear zone.

CONCLUSION

The objective of this paper was to present the capability of a recently
developed finite element scheme to assist in modeling of orthogonal
metal cutting process with both continuous and segmental chip
formation. A dynamic finite element analysis of the orthogonal metal
cutting process was performed. A fracture algorithm was developed
that automatically generated splitting of the elemental nodes as the
cutting tool penetrated the workpiece. The splitting of the node was
dependent on the state of strain of the elements attached to it while
the corresponding direction of the crack was determined by a
direction perpendicular to the average principal stresses at that node.
In order to account for the contact between opposite sides of the
crack, and in general all segments and bodies coming in contact, an
automatic slide line generation algorithm was developed. The
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modified code was utilized in simulation of orthogonal metal cutting
with the objective of simulating continuous chip formation as well as
segmental chip formation due to brittle fracture of chips. The
simulation results for the prediction of the general chip geometry
agreed well with the experimental results. However, a more realistic
simulation requires utilization of significantly denser mesh as well as
a more complete constitutive equation which includes the effects of
strain, and strain rate hardening, as well as the thermal softening
effects.

An important phenomenon associated with the generation of
segmental chips in cutting of some metals such as titanium is the
formation of adiabatic shear bands along the shear plane. In order to
perform realistic simulations of the cutting processes of those metals,
the method presented in this paper together with the utilization of
highly fine mesh and a proper constitutive equation such as the one
mentioned above should prove necessary and effective.
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ABSTRACT

The High Capacity Artillery Projectile (HICAP) is a new
lightweight cargo-carrying artillery shell being developed by the Army
Research Laboratory (ARL) and the Army Research Development
and Engineering Center (ARDEC). It is made chiefly of composite
materials and is capable of carrying all submunitions currently in the
Army's inventory and those under development. The weight savings
afforded by the lightweight shell enable it to carry nominally twice the
normal amount of payload as present shells with only a twenty
percent overall weight increase. The projectile is significantly longer
(78 inches) to accommodate the additional payload. Aerodynamic
stabilization is provided by fins since the heavy steel shell, which
normally provides the rotational inertia for spin stabilization, has been
replaced by composite materials. For ease of handling, the projectile
is divided into two modules, fore and aft, that can be snap-fitted
together any time prior to firing or can be breech-assembled. This
permits the user to mix munitions in a single round. Provisions have
been made for the incorporation of a rocket module for the rear which
would extend the range. This would be developed under an advanced
engineering development program. The rocket module can be
employed to deliver a standard payload to nominally twice the current
range. The HICAP represents a major leap ahead in capability for the
U.S. Army in Fire Support. This paper discusses the major technical
accomplishments to date in support of the program and those
challenges to be met in the near term.
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INTRODUCTION

The Army's inventory of cargo-carrying artillery shells are made

of steel and typically weigh from 95 to 103 pounds, depending on

payload. Approximately 65 percent of this weight is in the shell body.

There are two reasons for this. First, the setback loads applied during

the firing cycle call for a material with the strength of steel. Second,
the mass at the shell's outer radius when spinning, serves to stabilize

the round in flight. This weight limits the amount of submunitions that
can be carried. The HICAP (Figure 1) has a lightweight shell that is

- - - --- - - - --€

Figure 1. The High Capacity Artillery Projectile

fin stabilized and weighs less than a standard artillery shell yet can
carry twice the amount of cargo. The adoption of composite materials

provides HICAP with the capability to do the work of two M483-family
projectiles that deliver cargo such as grenades, mines, smoke, liquid

or jammers. The user can either deliver twice the payload for the
same number of rounds or deliver the same amount of payload using
half the number of rounds, improving his effectiveness or survivability

respectively. Survivability, in this application, is defined as the
reduced detection time of the firing battery. Since it will be firing
significantly less rounds to achieve the same effectiveness the risk of
counter-battery fire is reduced. Alternatively, the same number of
projectiles can be fired with a 50 to 100 percent increase in lethality
and effectiveness depending on the submunition and weapon. A
propulsion option for the rear module can be selected giving the
projectile equal lethality as present rounds but nominally double the
range providing a greater stand-off distance.
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New internal devices and shell design provide an opportunity for
optimal dispersion of submunitions. The ogive, being non-metallic,
creates opportunities for guidance devices such as embedded
sensors and antennas not available on some metallic ogives.

TECHNOLOGIES DEVELOPED FOR HICAP

The HICAP program requires the development of several varied
and challenging technologies. First and foremost is the development
of the composite shell of the rear module. Other novel technologies
are the fin assembly, the special joint connecting the fore and aft
modules, and the payload dispersal mechanisms.

Composite Materials

The rear module shell must be of sufficient strength to sustain the
setback loads during launch. It must not only carry its own weight but
the entire weight of the forward module including the shell, payload,
ogive, ejection charge and fuze. The forward payload cannot stack on
top of the rear payload due to structural limitations. To illustrate this
point, the M483 payload, grenades, can only be stacked eleven high.
Otherwise, at peak setback, the bottom layer would be crushed.
HICAP can carry 22 layers of grenades, separated into two stacks of
eleven. The forward stack is supported by a deck on top of the rear
module shell. The total load to be sustained by the rear shell at peak
setback is nearly a million pounds (its own weight plus that of the
forward shell at over 13,000 g's). This force is distributed over the
cross-sectional area of the shell of 8.6 square inches producing an
average axial compressive stress in the composite of 115 kpsi. This
strength level has been demonstrated in a static test and is believed
to be the highest strength level ever achieved for a thick graphite
composite tube under axial compression.

The shell wall is a hybrid of two thermosetting composite material
systems; graphite/epoxy (Hercules® IM7-8551-7/8553) and
glass/epoxy (Hercules® S2/8553). To accommodate the significant
axial loading at launch, the laminate stacking sequence design is
such that 75 percent of the composite plies are oriented in the axial
direction while the remaining 25 percent provide lateral support in the
radial direction. The overall fiber volume is 65 percent. All but the first
few inner layers employ IM-7 fibers. The first four inner layers contain
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S-Glass fibers. The S-Glass is more compliant in compression than
the graphite fibers and serve to more evenly distribute the axial stress
which tends to concentrate at the inner radius of composite tubes
under compression. This is illustrated by the following model. Figure 2
is an axisymmetric finite element representation of a steel endcap

ANSYS 4.4A
OCT 19 1992
14:17:52
PLOT NO. 1
PREP7 ELEMENTS
MAT NUM

ZV =1
DIST=0.737614
XF =2.594
YF =1.305

Figure 2. Axi-Symmetric Finite Element Model of a Composite Tube
Butted to an End Plate

butted to a composite tube. The axial layers can be distinguished by
light gray and the hoop layers by dark gray. The base of the endcap
has a pressure boundary condition of 40 kpsi simulating a ballistic
environment. The top of the tube is constrained from axial motion by
a symmetric boundary condition. The stress plot in Figure 3 shows
how the axial compressive stress is highest in the innermost axial
layer. When that layer is replaced by S-Glass, a more equitable
distribution of stress is achieved. Figure 4 shows the effect of a more
compliant first axial layer. The stress is reduced in the glass layer and
more evenly distributed to the remaining layers in the middle of the
shell wall where it is contained.
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Figure 3. Compressive Stress in the Composite Tube
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Figure 4. Compressive Stress in a Hybrid Composite Tube with More

Compliant Inner Layers
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Another design issue arising from the compressive loading of
composite tubes is end failure. The introduction of axial load at the
base of the shell has proven to be the most challenging aspect of the
composite design. It is known that the majority of the load must be
introduced into the shell wall through end loading. The complex state
of stress that develops at the composite/metal endcap interface gives
rise to various types of failure mechanisms. In all experimental tests
to date these localized failures have been shown to cause premature
catastrophic failure of the shell wall. This is illustrated in Figure 5
which shows the result of a static test of a full-scale tube. Figure 6 is
a smear photograph of a HICAP prototype rear module with a
surrogate fore module after launch from a 155-mm howitzer at zone 8
charge. The end failure has propagated forward in this case. The
intrinsic strength of the tube wall has been demonstrated to be
adequate. Several theories to explain this phenomenon have
emerged, yet the true cause remains to be proven. Early tests of thin-
walled sub-scale tubes, i.e. thickness/diameter << 0.1, result in
failures in the gage section at stress levels 50 percent higher than
those of thick-walled full-size tubes. The thin tube was ideally fixtured
by an elaborate gripping device shown in Figure 7. Virtually all of the
load is transferred into the structure through the inner and outer
surfaces by traction, far different from thick-walled cylinders which are
exclusively end-loaded. This type of device is not adaptable to thick
cylinders in a projectile configuration. It is likely that the introduction
of load on the base has some unresolved phenomenology that can
only be postulated at this time. One theory is a micro-buckling effect
which, due to localized shear at the interface, causes the ends of
fibers to bend and initiate delamination. Another theory states that a
small amount of radial tension exists when the tube is crushed also
causing delamination. In a effort to respond to these effects, a
special end fixture (proprietary to Custom Analytical Engineering
Systems, Inc) was designed which would induce a component of
radial compressive stress to the inside surface of the tube as axial
load is applied, thus eliminating the possible failure mode. A test
projectile was launched in February, 1993 which showed that the
composite exceed the laboratory strength.
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Figure 5. Static Compression Test of a Composite Tube.

Figure 6. Gun Firing Test of Composite Tube.
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Figure 7. Laboratory Fixture Used to Test Thin Composite Tubes for
Determining Highest Intrinsic Strength

HICAP Coupler

The payload is housed in two modules, one fore and one aft,
which are assembled at the breech or anytime prior to ramming. The
module concept has been adopted because the overall length of the
assembled round would be prohibitively long for handling purposes if
it were one piece, especially inside the limited working area of a
self-propelled howitzer. A special joint has been designed which
allows ease of assembly and has been ballistically hardened to
sustain the highest propelling charge. The joint also attenuates tensile
stress which can be found in long projectiles at muzzle exit due to the
sudden off-load of pressure. The existence of tension has been
established by computer simulation and actual gun firing tests.

A dynamic finite element analysis was employed to examine the
effect of pressure off-load at muzzle exit. Figure 8 is a finite element
representation of a 60-inch aluminum hollow shell with a one-inch
thick steel deck midway on the structure creating two compartments
for payload. Each compartment houses a simulated payload weighing
28 pounds. A typical ballistic loading cycle was applied to the base
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including a monotonically decreasing pressure load at muzzle exit
which decays to zero in 8 calibers of travel through the blast region.
The analysis was allowed to run past muzzle exit for three
milliseconds. Figure 9 is a stress history of an element near the mid

ANSYS 4.4A
OCT 21 1992
10:11:33
PLOT NO. 1
PREP7 ELE24ENTS
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Figure 8. Finite Element Model for Wave Propagation Study
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Figure 9. Axial Stress History of an Element Near the Midpoint
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muzzle exit are a result of the release of compressive force much like
that of a compressed spring that is suddenly unconstrained. This
phenomenon was demonstrated in some early prototype tests of a
composite tube. A tube was joined to a surrogate forward payload by
a simple double-ended stud with no attenuation capabilities. A smear
photograph (see preceding section) shows a gap at the joint
indicating separation and verifying the need for a wave-attenuating
joint (mechanical filter).

Although the details of the joint cannot be shown, a dynamic
finite element simulation was performed on a model identical to that
shown in Figure 8 with the addition of the joint. Figure 10 shows the
stress histories of two elements, one above and one below the joint.
It is apparent that the tensile portions of the waves have been
attenuated.

I ANSYS 4.4A
JAN 23 1991
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Figure 10. Axial Stress Histories of Elements above and Below the
Joint Showing Attenuation of Tensile Portions of the Wave.
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Cargo Dissemination

The design of HICAP provides an opportunity for advanced cargo
dissemination techniques. Many current submunitions take the shape
of a "hockey puck" such as implantable mines, radio frequency
jammer modules and illumination submunitions. Others deploy a
canister, which is burst after ejection. However, the most frequently
used submunition, M42/M46 grenades, are disbursed in a circular
pattern through base ejection and projectile spin. The HICAP provides
this method for the rear module and employs a central burst method
for the fore module much like that used in the Army's Multiple Launch
Rocket System (MLRS). The fore module has a central expulsion
charge to radially disburse the grenades by bursting the 1/4 inch thick
composite shell. The shell wall can be designed by judicial selection
of ply orientation to support setback forces during launch, yet burst
easily when pressurized.

A prototype embedded fuze has been designed by the Fire
Support Armaments Center of ARDEC, which will initiate two burster
charges. The forward charge bursts the forward shell disseminating
the cargo radially (grenades only) and creates a seismic pulse which
is picked up by a sensor in the rear module. The sensor then initiates
the rear burster charge which pressurizes the rear module and forces
the payload through the base for conventional dispersal. The pattern
on the ground should be as illustrated in Figure 11. By
adjusting the amount of charge in the central burster of the fore
module, the density and size of the doughnut pattern can be
controlled. Tests have been performed at ARDEC to determine
grenade velocity at burst. These test results were put into computer
models to predict the pattern shape and density on the ground.

CONCLUSIONS

The HICAP concept provides the soldier with many options to
enhance his fire mission. If enhanced survivability is desired he will
be capable of delivering double the amount of payload with a single
round and cut his detection time in half. With the rocket rear module
option, he can deliver the conventional payload to nominally double
the range providing a greater standoff distance. If the battle plan calls
for enhanced effectiveness, he can maintain his rate of fire and
increase the lethality by 50 to 100 percent, depending on payload.
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M42/M46 GRENADES OUTWARD EXPLOSIVE FORCE

REAR EXPULSION

FORWARD MODULE GRENADES REAR MODULE GRENADES

Figure 11. Cargo Dissemination Pattern of Grenades on the Ground

HICAP represents a major leap ahead in capability for the U.S. Army
in Fire Support.

This advance in capability could not have been achieved
without crossing several technical barriers. New manufacturing,
assembly and modelling techniques were developed in support of
HICAP to achieve these goals. Many challenges lie ahead such as
manufacturing for affordability, guidance and control, cargo
dissemination in a non-spinning mode and integration of components.
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Abstract
Reddy's layer-wise theory is used to perform free-vibration and impact

response analysis of laminated plates. The results obtained from this the-
ory are compared with those obtained from a full-fledged three-dimensional
elasticity analysis and various equivalent single-layer theories that are avail-
able. These include : (i) the classical laminated plate theory (CLPT), (ii)
the first-order shear deformation laminated plate theory (FSDPT), and
the third-order shear deformation plate theory (THSDPT). The elasticity
equations are solved by utilizing the state-space variables and the transfer
matrix. The forced-vibration analysis is developed by the modal superpo-
sition technique. Six different models are introduced for representation of
the impact pressure distribution. The first five models, in which the con-
tact area is assumed to be known, result in a nonlinear integral equation
similar to the one obtained by Timoshenko in 1913. The resulting nonlin-
ear integral equation is discretized using a time-finite-element scheme, Two
different interpolation functions, namely: (i) Lagrangian and (ii) Hermitian
polynomials, are used to express the impact force. The sixth loading model,
in which the time dependence of the contact area is taken into account ac-
cording to the Hertzian contact law, resulted in a complicated but a more
realistic, nonlinear integral equation. Also a simple, but accurate, numeri-
cal technique is developed for solving this nonlinear integral equation which
results in the time-history of the impact force. A detailed study concerning
all the response quantities, including the in-plane and interlaminar stresses,
is carried out for symmetric and antisymmetric cross-ply laminates and im-
portant conclusions are reached concerning the usefulness and accuracy of
the various plate theories.
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Introduction

The composite materials are widely used for space, military and com-
mercial applications at present. due to their high strength and stiffness to
weight ratios. Also these materials can be tailored to design requirements
by varying the laminate scheme. Composites are used in situations involv-
ing the sudden application of loads. The dynamic response of the structure
ensues after load application and a state of stress may be generated that
leads to failure. One obstacle that prevents application of these materials in
primary structures is the damage induced due to service or accidental loads
and the consequent reduction in stiffness, strength and life of these struc-
tures. Impact by blunt objects can reduce the uniaxial tension strength
of some composites by as much as 30 percent without any visible surface
damage. Therefore, damage resistant and durable composite materials are
essential for the design of laminated structures.

The low velocity impact response of laminated composite plates has
been investigated extensively by experimental and numerical methods. Gold-
smith [1] used the normal modes method to determine the dynamic response
of an isotropic plate or beam to a rigid impactor. Timoshenko [2] used
normal modes and a Hertzian contact law to analyze the deflections of a
beam impacted by an impactor. The resulting nonlinear integral equa-
tions were solved by numerical integration. Sun and Chattopadhyay [3]
extended Timoshenko's method to a laminated simply supported compos-
ite plate. Ramkumar and Chen [4] used Fourier integral transforms to
find the response of an infinite anisotropic laminated plate to an exper-
imentally determined impact force. Petersen [5] used the finite element
method based on a shear deformable plate theory with rotary inertia to
analyze laminated plates subjected to impact loads. Thangjitham et al. [61
obtained low-velocity impact response of orthotropic plates using a higher-
order theory which incorporates the transverse normal stress and rotary
inertia effects and fulfills the shear stress conditions on the bounding sur-
faces. Sun and Liou [7] used a three-dimensional hybrid stress finite element
method to investigate laminated plates under impact loads. Cairns and La-
gace [8] obtained transient response of graphite/epoxy and Kevlar/epoxy
laminates subjected to impact using a Rayleigh-Ritz method. Chao, Tung,
Sheu, and Chern [9] employed a 3-D laminated theory in conjunction with a
modal analysis to study the impact response analysis of thick comoposites.
Detailed reviews of various investigations into impact response and wave
propagation studies are given by Kapania and Raciti [10] and Abrate [11].

For the study of impact response of metals and composites, many re-
searchers [1-8] used the Hertzian contact law which relates impactor and
plate motion with contact force. However, Yang and Sun [12] showed that
the Hertzian contact law was not adequate by performing statical inden-
tation tests on graphite/epoxy composite laminates using spherical steel
indenters of different sizes. They found that significant permanent indenta-
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tions existed. In order to account for the permanent indentation, Tan and
Sun [13] proposed a modified Hertzian contact law following Yang and Sun
[12]. They compared experimental results with the predictions of finite el-
ement analysis using the statically determined contact law. Sun and Chen
[14] analyzed initially stressed composite plates under impact loads using
this modified Hertzian contact law.

In this study, we have used Tan and Sun's law to study the impact
response of laminated plates using four different theories. A model su-
perposition approach is used and the results are obtained for natural fre-
quencies and the impact response. A time-finite-element based approach is
developed for obtaining the impact responses. It is observed that Reddy's
layer-wise theory captures 3 - D effects. While the convergence of the re-
sults with respect to number of mathematical layers in the modeling is fast,
the convergence of various results with respect to the number of modes is
quite slow, especially at the point of impact. However, away from that
point, the convergence with respect to the number of modes is rather fast.

Layer-wise Theory

To understand Reddy's [15] layer-wise theory, consider a two-layered
plate as shown in Fig. 1. Let ul(x,y,t),u 2(x,y,t), and u 3(x,y,t) rep-
resent the displacement components of all points located, respectively, at
z = -h/2, z = 0, and z = h/2 in the x-direction. Assuming that the dis-
placement component of the plate in the x-direction has a linear variation
within each layer, gives

u1(x,y,z,t) =

(1 + z)u(xy,t) - ozu'(xy,t) > z > -h/2 (1)

SzU3 (x,y,t) + (1 - oZ)U2(Xyt) < z < h/2

Similar expressions can be written for the displacement components u2(x, y, z, t)
and u3 (x, y, z, t) of a point located at (x, y, z) in the undeformed laminate in
the y- and z-directions. This way the displacement field will be continuous
through the laminate thickness; the transverse strain components, however,
will not be continuous at the interface of the two layers. This, on the other
hand, leaves the possibility of the transverse stress components becoming
continuous at the interface of the two layers. This seemingly hypothetical
presumption can become a reality by subdividing each physical layer into a
finite number of mathematical layers. That is, by introducing more inter-
faces and, therefore, more unknown generalized displacement components
at such mathematical interfaces. It is possible to generalize the result in Eq.
(1) for a generally laminated plate by representing u1 (x, y, z, t), u2(x, y, z,
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and u 3 (X, y, z, t) as

ul (x, y, z, t) = u(x, Y, t). Oi(z)

u2 (x,y,z,t) = vi(x,y,t). Oi(z) (2)

ua(X,y,z,t) =wi(x,y,t). 0'(z) i1,2,...,N + 1

where 0'(z) are defined as:

0 z < zi- 1
¢•=hi_ (Zi-1 -- Z) Zi-1 :ý Z <• Zi()

q51(z) ={/$ .5zi-) (3)
-2 -hi (Z - Zi+I) Zi < Z < Zi+l

10 Z > Zi+l

In Eqs. (2) the function ui(x,y,t),vi(x,y,t), and w"(x,y,t) represent the
displacement components of all points located on the ith plane (defined by
z = zi) in the x-, y-, and z-directions, respectively, in the undeformed lam-
inate. Also N denotes the total number of mathematical layers considered
in a laminate. Note that a repeated index indicates summation over
all values of that index. Substituting Eqs. (2) in 3D strain-displacement
relations results in

au (0 a, vell= ., 622 = - ,1 = 2 y- +±

ax 0d9b 0wX 4

713 = dz x 0, 723 -V- •dz+ Oy-u 0' 33 W-- (4)y dz

Using Hamilton's principle, 3(N + 1) equations of motion corresponding to
3(N + 1) unknowns u , v , and w are derived:

*i a m , .Mi6

8i: + -- 46 - Q ziij

Ox , ay 2

w -+- ±- QQ + 6, 1 P. -I'ijZ3J

where bil is the Kroneckar delta and (i,j = 1,2, ...,N + 1).
For a laminated plate with a rectangular planform, the boundary con-

ditions in LWPT at an edge parallel to x-axis involves the specification of
ui or Ml; v or M; and w& or K'. Similarly, at an edge parallel to y-axis,

448



we can specify the required boundary conditions. The generalized stress
resultants MA', M1, etc., and mass terms P J are defined as

h/2

h/2
(QI (13,23). dz (5)

(1 , Q" 3) = h/ -- 3,02 ,i' 3 d
_h/2

(K' , ')=

11i -€T(2 f-/ O1,02)dz()

h/2

1 = f-h/2 pboq$' dz (6)

where p(x, y, z) denotes the mass density of the material point located at
(X, y, z) in a laminate. By substituting the three-dimensional constitutive
law for each layer along with the strain-displacement relations (Eq. 4) in
Eq. 5, one can obtain the 3(N + 1) equations of motion corresponding to
3(N + 1) unknowns u ,v, and w'. The details are given in Ref. 16.

Free-Vibration Analysis: By assuming the time-dependent motion
of the plate to be harmonic, and assuming a spatial variation for the dis-
placement components that satisfies the boundary conditions, we can obtain
an algebraic eigenvalue problem. For the simply-supported plates consid-
ered in this study, the displacement components in the layer-wise theory
(LWPT) were assumed to be:

I A .nnk COS amsXin

v1j = nk sin amX cos /ny coswmnkt (7)

Iw cnk sin cemx sin OnY

The natural frequencies of symmetric and antisymmetric cross-ply, lam-
inated plates (00/90°), (00/900/00), (00/900/00/900) were found in this
study. The results obtained from LWPT were compared with those ob-
tained from (i) the classical laminated plate theory (CLPT), (ii) the first-
order shear deformation laminated plate theory (FSDPT), the third order
shear deformation theory (TSDPT), and the elasticity solution obtained
using a state-space approach. Note that results using the layer-wise the-
ory (LWPT) were obtained using six layers to represent each ply. For the
(00/900/00/900) laminate LWPT, thus yields 75 lowest frequencies for a
given mode in the x- and y- co-ordinate (for each m and n pair). This
compares with 3 natural frequencies for each mode in CLPT; five natu-
ral frequencies in FSDPT and TSDPT; and infinite frequencies if we use

449



the theory of elasticity. Also by uncoupling the Navier Equations a de-
tailed analysis was carried out to study various mode shapes and natural
frequencies of a homogeneous transversely isotropic plate [16].

Impact Response Analysis

The impact response of a number of laminated plates was studied next
using various theories. A modal super-position approach in conjunction
with a contact law suggested by Tan and Sun [20] was used. This contact
law is a variation of the more famous Hertz contact law which is given as:
F = K2ac where F is the contact force, a is the indentation and K 2 is the
contact co-efficient. The Hertzian contact law, being an elastic law, does not
account for permanent indentation. For composites, permanent indentation
may occur at relatively low loading levels and for these materials, loading
and unloading are in general, different from each other. Tan and Sun's
[13] experimentally determined contact law does take into account differing
loading and unloading behaviors.

To obtain the generalized forces for use in the modal superposition, six
different models are introduced for representing the impact force. The first
five models treat the impact force as a: (i) concentrated force, (ii) uniformly
distributed pressure over a rectangular area (a * b), (iii) a cosine shaped
load distributed over a rectangular area, (iv) uniformly distributed over a
circular area, and (v) a spherically shaped load distribution over a small
circle. In all these cases, the contact area is assumed to be known and the
resulting nonlinear integral equation is same as given by Timoshenko. This
integral equation is descretized using a time-finite element scheme. Two
different interpolation functions, namely: (i) Lagrangian or the so-called
hat functions (shown in Fig. 2), and (ii) Hermitian polynomials (Fig. 3)
are used to express the temporal distribution of the impact force. The
details of the determination of the force are given in Ref. 17. The present
approach due to its modular nature is preferrable to the existing approaches.
In the sixth modeling, the time dependence of the impact force is taken
into account using Hertz contact law, resulting in a more complicated but
realistic integral equation. A simple and accurate, numerical technique is
developed for solving this nonlinear integral equation [17].

The present developments were first applied, for verification, to study
the impact response of a simply-supported isotropic beam (previously stud-
ied by Timoshenko) and subsequently to that of a number of laminated
plates. The time history of the impact force and the indentation in the
isotropic beam are shown in Figs. 4, and 5, respectively. In the Timo-
shenko's solution, the response quantities are obtained up to 1780 pisec.,
and only two collisions were observed. The present results indicate the pres-
ence of a third contact at about 3000pjsec. The integral equation was solved
using the hat functions with a time step of l0tsec. To check the accuracy
of these results, analysis was also carried out using Hermitian polynomials
and it was seen that quite accurate results are obtained using hat functions.
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The impact response of an anti-symmetric cross-ply, simply-supported
square laminate (00/900) is next studied. The material properties are given
in Ref. 17. Two cases with length to thickness ratio (a/h) of 40 and 20 were
studied. Figures 6 and 7 indicate the impact force and displacement time
histories (for a/h = 20) as obtained by various theories. Note that FSDPT
and TSDPT yield very similar results. This may not be true in general
as the FSDPT results may be strongly influenced by the shear correction
factor. The effect of number of layers used for each physical sublayer was
also studied and the results are shown in Fig. 8 for a plate with (a/h) of
20. To obtain these results, each physical layer was modeled using (i) one
sublayer, (ii) two sublayers, and (iii) three sublayers. Clearly convergence
is obtained by modeling each layer into a small number of sublayers. In
addition, the effect of number of modes on the response calculation was also
studied. The results from this convergenece study for the case of impact
force, transverse displacement and (al1l) are given in Figs. 9, 10 and 11
respectively. Note that for the case of FSDPT the convergence with respect
to the number of modes is quite fast whereas it is very slow for the case of
LWPT. This is due to the fact that the laminate is more precisely modeled
in LWPT as a three-dimensional continuum than in FSDPT. Also note
that the convergence is extremely slow at the point of impact. However,
it was observed to be relatively fast for points away from the point of
impact. These results along with the complete results for (00/90°/00) and
(00/900/00/900/0*) laminates are given in Ref. 17.

Concluding Remarks

The paper describes a recent study on the free vibration and impact
response of laminated plates using four different plate theories. The first
three theories belong to the class of the equivalent single-layer theories in
which transverse extensibility of the plate is ignored. The fourth theory
takes this into account by representing the displacements in a layerwise
manner. The study demonstrates the effectiveness of this theory through
several examples pertaining to the natural frequencies, the impact force,
the transverse displacement and the inplane and interlaminar stress com-
ponents. In the case of natural frequencies, it was observed that the CLPT
yields three natural frequencies for each mode in the inplane co-ordinates.
The corresponding number is infinite for three-dimensional elasticity, five
for the case of FSDPT and TSDPT, and 3(N + 1) for the case of LWPT.
Here N is the number of mathematical layers in which the laminate is di-
vided into. Hence by increasing this number, one can obtain the natural
frequencies given by the 3 - D elasticity. It is observed that only through
the use of the LWPT, one can capture the three-dimensional effect. But
, in this theory, the modal convergence for the various response quantities
(transverse displacements, impact force, inplane and interlaminar stress
components) is extremely slow, especially at the point of impact.
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Fig. 1 Displacement components uJ(x,y,t), vJ(x,y~t) and wJ(x,y,t)
in a two-layered plate in the layerwise theory.
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Abstract
A new experimental technique for imposing controlled, dynamic

confinement on specimens subjected to high-strain-rate uniaxial
compression is being developed. A brief description of the
experimental technique, as well as some preliminary experimental
results of the technique are presented in this paper. The results
show that under dynamic confinement, the impact strength of a brittle
glass ceramic increases as compared to its unconfined failure
strength. It is also observed that the propensity of the ceramic to
fragment is suppressed by dynamic confirAement.

Introduction ....
Ceramics and their composites are ýbeing increasingly used in

advanced applications. Thus, there is a, need to develop constitutive
models to characterize their behaviol, 13and failure modes under
multiaxial dynamic loading conditions. Ceramics fail typically at very
small strains (<1%) under uniaxial compression, and an
understanding of damage initiation and evolution is important in the
analysis of such brittle materials. In brittle materials, the failure
strength has been predicted to increase even under moderate
amounts of confinement. This increase has been observed
experimentally under static confinement in rocks and ceramics
[1,2,3]. In many impact related applications, inertial confinement
plays an important role in influencing the failure mode and hence the
overall performance of the system. This points to the need for
experimental techniques which will allow the exploration of dynamic
behavior of materials under multiaxial loading conditions. Due to the
transient nature of loading encountered in practical applications, the
experimental technique should be able to apply both proportional
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(between axial and lateral loading) and non-proportional loading
paths to study failure mode transition in engineering ceramics at
different strain rates and under varying amounts of confinement. In
order to permit the investigation of the relation between micro
structure and macroscopic behavior, the technique must allow
recovery of the sample after being subjected to a known loading
history. In this paper, we present a new experimental technique
satisfying the above requirements. Preliminary results using this
technique have been obtained on a glass ceramic.

Experimental Technique
The experimental setup consists of a conventional split

Hopkinson (Kolsky) pressure bar (SHPB) [4,5] and an electro-
magnetic force generator [6]. A schematic of the experimental setup
is shown in Fig. 1. The SHPB is used for generating uniaxial
compression pulses of known duration, shape and amplitude.
Dynamic confinement is achieved by using an electro-magnetic force
generator, which consists of a copper strip surrounding the specimen
and a capacitor bank (energy capacity -120kJ) in which capacitors
are connected by inductances to discharge in a given sequence. The
copper strip provides a path for high intensity electric currents flowing
in opposite directions around the specimen, as shown in Fig. 2.
When current passes through the copper strip, the resulting electro-
magnetic force will generate pressure on the specimen surface. The
outer layer tends to expand outwards but is restricted by a rigid mass.
Cylindrical sample shape is preferable for evenly distributed confining
pressure over the lateral surface of the sample. There are other
ways to generate confinement pressure(e.g., hydro-static pressure
[3]), which have been used to determine dynamic failure strength of
brittle materials under static confinement. The electro-magnetic
method of applying confinement has two principal advantages:

1. Pulse Tailoring: the dynamic confining pressure pulse can be
tailored to the desired shape, magnitude and duration through proper
design of the circuitry associated with the capacitor bank. This
feature enables us to apply the multiaxial compression loading either
proportionally or non-proportionally.

2. Timing: to simulate the inertial confinement effect in dynamic
loading conditions, the confinement pressure should initiate and
terminate with the axial loading. Therefore, the timing of the
confinement pulse should be very accurate in every experiment. In
the electro-magnetic technique, the timing is controlled by electric
circuits and a repeatable accuracy of within one microsecond is
achievable.
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In the preliminary experiments presented later in this paper, the
timing of the SHPB and the capacitor bank discharge system are
coordinated by a photo diode(photo-interrupter) and a time delay
circuit as shown in Figure 1. When the projectile passes through the
photo-interrupter, the time delay circuit is triggered, which in turn will
trigger the discharge system at a set delay time. The delay time is
related to the transit time of the axial loading pulse to the specimen.
The distance between the photo-interrupter and the incident bar is
determined by the strain rate requirement of the experiment.

The SHPB has a momentum trap feature [7], which will load the
sample only once, and the electro-magnetic pressure pulse can be
tailored and timed to match the axial compression pulse. Therefore,
the sample is loaded by a well-characterized loading history. This will
enable us to relate the macroscopic behavior to the observed failure
modes of the material through microscopic observations on the
recovered sample.

The acquisition and interpretation of data in SHPB is well
established [4,5]. If the specimen undergoes homogeneous
deformation, the axial stress s in the specimen is

T = A°0 Ect (1)
As

where A0 and As are the cross-sectional area of the transmission bar
and the specimen respectively. E is the Young's modulus of the bar
material and Et is the transmitted axial strain.

The rate of current flow in the copper strip can be measured
by a Rogovski coil [6]. The output of the coil then is integrated by a
simple integration circuit to obtain the current history. In the case of a
coil with two concentric layers with currents of same amplitude but
flowing in opposite directions as shown in Fig. 3, the electro-magnetic
confinement pressure P is given by

pUo (i)2(s 1
P =--L_ ( (COS (XI - COS 2 ) (2)

where go is the coefficient of permeability (4nx10-7 henry/m in
vacuum), and i is the total current in one layer. The dimension b and

the angles, (X and (X2 are shown in Fig. 3.
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Results
To check the feasibility of the experimental technique, a

previously investigated machinable glass ceramic, macor, is used as
aý model material in the preliminary experiments. The quasi-static
and dynamic behavior of the material under uniaxial compression is
well established [8]. The glass ceramic has a Young's modulus of 70
GPa and a quasi-static compressive strength of 350 MPa. The
cylindrical samples used in the experiments are 8.10 mm in diameter
and 5.38 mm in length.

The capacitor bank is set to generate trapezoidal pressure pulses
with a duration of -400 ms and rise times of - 10 ms. The axial
stress pulse is also trapezoidal but with shorter duration (120 ms).
The confining pressure is applied before the arrival of axial pulse at
the sample. In the confinement experiments, the capacitor bank was
charged to 5 kV, which corresponds to a stored energy of 7.5 kJ.
The preliminary experiments include two experiments with dynamic
confinement (confinement pressures of 0.5 MPa and 10 MPa) and a
uniaxial SHPB experiment (no confinement) for comparison. The
confining pressures are estimated from Eq. (2). All the experiments
were conducted at a nominal axial strain rate of 350/s.

Fig. 4 shows the strain gage signals from the transmission bar for
experiments with (10 MPa) and without confinement. The impact
strength can be calculated from the transmitted pulse using Eq. (1).
The impact (failure) strength increases from 530 MPa to 630 MPa
(17% increase) under a confinement pressure of about 10 MPa. The
recovered samples are shown in Fig. 5. The sample from the
experiment with no confinement is completely fragmented even
though it was loaded only once by the momentum trapping SHPB. In
the experiment with a small confinement (-0.5 MPa) the sample also
fragmented, but the fragment sizes are larger, as can be seen from
the crack density on the surface. The sample from the experiment
with moderate (-10 MPa) confinement has a few cracks visible on
the impact face, however the sample is completely intact. The axial
stress on the sample is also the largest among the three
experiments. The confinement pressure apparently reduces the
tendency for crack initiation and growth, thus suppressing the axial
splitting which would result in fragments.

Conclusions
A new experimental technique capable of applying dynamic

multiaxial compression is being developed. During the experiment,
the specimen is subjected to a known loading history. Microscopic
observations on the recovered sample can thus be related to the
macroscopic behavior of the material. The applied loading history
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can be either proportional or non-proportional. Preliminary
experiments show that even for moderate confining pressure
estimated to be about 10 MPa, an apparent increase in impact
strength for machinable glass ceramic, macor. Recovered samples
show that under confining pressure, the failure mode (damage)
changes considerably, from complete fragmentation to little or no
damage in the sample.
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Hydrodynamic Compressibility of High-Strength Ceramics*

Dr. D. E. Grady
Department 1433

Sandia National Laboratories
Albuquerque, New Mexico 87185-5800

Introduction

Planar shock-compression experiments on monolithic ceramics provide measure-
ments of axial-stress and specific-volume states commensurate with the high-strain-rate
large-confining-pressure environment of an impact test. The large shear stresses achieved
during the uniaxial-strain compression process are attested to by the Hugoniot elastic limit
- an onset of softening in the axial-stress-versus-specific-volume response due to inelas-
tic yielding in shear. Unless both longitudinal and transverse stress are measured in the
shock compression experiment, complete deviatoric-stress constitutive data required to
fully model the dynamic compression and flow process are not provided by the experi-
ment. Although transverse stress measurements within the shock environment have been
performed, the methods are still developmental and results in many cases are not fully sat-
isfactory.

An alternative method commonly used to infer the deviatoric constitutive proper-
ties of the material during the shock compression process is to relate the Hugoniot or lon-
gitudinal-stress-versus-specific-volume curve to the hydrodynamic response of the
material. The latter curve is usually determined indirectly by the correction of isothermal
hydrostatic data for adiabatic conditions within the shock process, or by extrapolation of
lower pressure ultrasonic data using accepted functional forms for the higher pressure
compression behavior.

Static diamond-anvil compression data have not previously been available up to
the required pressures. Recent results for ceramics with diamond-anvil methods are
encouraging, however [Bassett et al., 1993, Manghnani, 1993].

Another method, and that which is explored in the present work, is to directly mea-
sures the hydrodynamic compression of the material of interest through shock-wave tech-
niques. The method involves the immersion or mixing of the test material into a matrix
*This work sponsored by the Joint DoD/DOE Munitions Technology Development Pro am and conducted
under the auspices of the U.S. Department of Energy under contract number DE-ACO4-'/6DP00789.
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material which is fluid like in its shock-compression behavior (unable to support
deviatoric stresses). This approach was originally explored by Adadurov, et al.
(1962). It was used by Kanel' and Pityulin (1984) to measure the hydrodynamic
properties of titanium carbide. More recently, Tang and Gupta (1988) used the
technique to investigate phase transformation in cadmium sulfide, and Poduretz, et
al. (1988) have investigated the dynamic compression of silicon dioxide using
similar methods.

In the present study we have developed the techniques to investigate the
hydrodynamic response of high-strength ceramics by mixing powders of the
ceramics with copper powder, preparing compacts, and performing shock com-
pression tests on the metal-ceramic mixtures. Hydrodynamic properties of silicon
carbide, titanium diboride, and boron carbide to approximately 30 GPa have been
examined by this method, and hydrodynamic compression data for these ceramics
have been determined. We have concluded, however, that the measurement
method is quite sensitive to sample preparation and uncertainties in shock wave
measurements. Application of the experimental technique is difficult and further
efforts are needed before the method can be applied with full confidence.

Material Preparation

Mixture samples were prepared from powders of the pure ceramic and cop-
per. Nominal grain size of the ceramic was 15-20 ptm and the particle distribution
was fairly narrow. Minus 325 mesh three-nines purity copper was used as the
matrix material. Appropriate masses were determined to achieve a 50%-50% by
volume mixture of the ceramic-copper composite.

The measured masses of ceramic and copper powder were combined,
placed in a mixing vial with two 12.7 mm D tungsten carbide spheres, and mixed
for two hours in a Spex Mixer/Mill. The mixture was then loaded into a graphite
and grafoil lined, 40.6 mm ID, TZM die and placed in an induction-heated vacuum
hot press.

After achieving a vacuum, a pressure of 166 MPa was applied to the speci-
men. The temperature was first increased to 900 degrees C at a rate of 30 degrees/
minute and then held at 900 degrees C for one hour. The power was then shut off
and the system was allowed to cool to room temperature. Pressure on the specimen
was relieved at temperatures below 300 degrees C.

Samples were prepared in the form of uniform discs which were machined
to approximately 5 mm in thickness and 38 mm in diameter. One sample of each
type was sectioned, polished and examined by optical metallography and electron-
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Figure 1. Experimental configuration for Hugoniot and release tests.

probe microanalysis. Negligible contaminants were found in the samples and
ceramic particle distribution was judged sufficiently uniform. Ultrasound tests did
not revealed any internal cracking in the specimens tested. Measured densities
were within several percent of theoretical. This level of porosity was deemed
acceptable for the present test method. Measured average densities, longitudinal,
and shear ultrasonic velocities, and elastic moduli for the composites are provided
in Table 1.

Table 1:
Properties of Metal-Ceramic Composites.

Densi Longitudinal Shear Bulk Poisson'sSample kg/me Velocity Velocity Modulus Poio
km/s km/s GPa Ratio

SiC/Cu 5960 5.26 3.20 80 0.19

TiB 2/Cu 6560 6.60 3.82 158 0.25

B4C/Cu 5670 5.50 3.49 69 0.16
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Shock-Compression Methods

Shock-compression experiments were performed to measure both Hugo-
niot and release states in the metal-ceramic composite samples. The method is
compatible with the laser interferometry shock-wave diagnostics use and was
developed specifically for accurate Hugoniot and release state analysis [Grady and
Furnish, 1988]. The experimental assembly is illustrated in Figure 1. The mixture
sample is mounted on the projectile, backed by PMMA (polymethylmethacrylate)
and preceded by a thin disc of aluminum (6061-T6 alloy). The stationary target
consists of a thin aluminum disc followed by a lithium fluoride window.

Projectiles are accelerated to velocities between 1.0-2.4 km/s with a single-
stage propellant gun and caused to undergo planar impact on the target. Diffuse-
velocity interferometry or VISAR [Barker and Hollenbach, 1972] is used to moni-
tor the time-resolved velocity at the aluminum-LiF interface in the target. A repre-
sentative motion for one of the present tests is shown in Figure 2. Peripheral

2.0 i . . . i

TEST CE 69

1.5 u

1.0

8

0.5

0,0 , , , , I , , , I . . .* . I I I ,

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

ThC (jus)

Figure 2. Interface particle velocity profile for test CE-69.
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electrical shorting pins are used to measure projectile velocity and planarity of
impact as shown in Figure 1.

Impact velocities were selected to achieve Hugoniot pressures within the
range 15-30 GPa. Necessary experimental and Hugoniot properties are provided in
Table 2. Hugoniot analysis methods for this impact configuration have been dis-
cussed previously [Grady and Furnish, 1988, 1990].

Table 2:
Hugoniot Properties

Test Impact Hugoniot Hugoniot Hugoniot Ceramic
No. particle specific compression

Material vel. pressure velocity volume

kg/m3  km/s GPa km/s m3/kgX10 6  m3/kgX106

CE-69 SiC/Cu 2.361 29.7 0.840 144.7 144.7

CE-78 SiC/Cu 2.027 24.5 0.715 146.2 146.2

CE-76 TiB2/Cu 1.797 21.1 0.612 134.7 203.5

CE-77 TiB2/Cu 2.347 29.6 0.801 131.2 199.4

CE-92 B4C/Cu 1.782 20.6 0.622 157.6 360.7

CE-93 B4C/Cu 2.063 24.5 0.730 154.6 352.4

CE-94 B4C/Cu 2.345 29.1 0.817 153.4 353.0

Mixture Analysis

To calculate the hydrodynamic compressibility of the ceramic from the
Hugoniot measurements on the mixture, some simplifying assumptions are
required. First, it is assumed that any initial porosity is collapsed and eliminated
during the shock compression process. Second, based on the relatively low yield
stress of the copper matrix it is assumed that stress deviators in the mixture at the
shock state are sufficiently low that the measured Hugoniot stress can be sensibly
equated to the pressure. Third, it is assumed that the compressibility of the ceramic
and copper are additive. That is,

'U (p) = Xs (P) + (1 -X)(p), (1 )
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where 1j, us and uc are the specific volumes of the mixture, ceramic, and copper,
respectively, and X is the mass fraction of ceramic in the mixture.

Based on the measured masses of ceramic and copper (50%-50% volume
ratio), the mass fractions of silicon carbide, boron carbide, and titanium diboride
are calculated to be X = 0.265, 0.335, and 0.220, respectively. The compressibility
of copper is calculated from its known Hugoniot properties. Linear shock-velocity
versus particle-velocity parameters for copper [Marsh, 1980] are C = 3.940 km/s
and S = 1.49. Hydrodynamic compression states for the three ceramics based on
Equation 1 are compared with corresponding Hugoniot data on monolithic ceramic
in Figures 3-5, and tabulated in Table 2. Horizontal error bars shown for the data
are estimated from the uncertainties in Hugoniot response of the mixture, and in
the initial mass fraction of components.

Discussion

The new data provided in Figures 3-5 provide hydrodynamic (adiabatic) compres-
sion properties for several ceramics at pressures of about 20-30 GPa based on the
method of shock compression of metal-ceramic mixtures. Confidence in these data
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Figure 3. Hugoniot and hydrodynamic compression data for silicon carbide
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are, of course, subject to the assumptions of compression additivity and negligible
shear strength at the shock state which is assumed in the analysis of the wave-pro-
file measurement needed to calculate the pressure versus volume change in the
ceramic.

It has not yet been established that fully hydrodynamic conditions are achieved in
the shock compressed state. Additional data on silicon carbide mixtures [Grady,
1993] suggest that deviatoric stress states may still exist in the composite samples
even at these levels, and possible explanations are discussed. Compression states
above 20 GPa appear to be at or very close to hydrodynamic conditions. If residual
strength still persists in the mixture at these shock states then the true hydrody-
namic compression state would lie even further to the left in Figures 3-5.

The measured compression values are also subject to uncertainties in sample prep-
aration and shock-wave diagnostics. The error bars in Figure 3-5 are based on a
reasonable assessment of these sources of uncertainty, but they do not account for
contributions to error that may have been overlooked - a serious concern with the
present method.
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Figure 4. Hugoniot and hydrodynamic compression data for titanium diboride
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The hydrodynamic data in Figure 3-5 are compared with Hugoniot data obtained
on monolithic samples of the same ceramics. Hugoniot data were obtained on
near-theoretical density (1%-3% porosity) ceramics. The three ceramics examined
exhibit high Hugoniot elastic limits (10-20 GPa), although the actual dynamic
yield stress of titanium diboride is still in question. A persistence of strength at the
shock state for the monolithic ceramic requires that the measured stress state lie
above the mean pressure state at the same specific volume. As seen in Figure 3-5,
this is generally the case.

In Figures 3-5 calculation of the hydrodynamic compression of the theoret-
ically dense ceramic based on ultrasonic data are also provided. Compression
curves are based on the pressure versus volume relation suggested by shock wave
data,
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Figure 5. Hugoniot and hydrodynamic compression data for boron carbide
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where F = 1 - p,/ p. The near equivalence of Equation 2 to the finite strain Birch-
Murnaghan equation-of-state has been demonstrated by Jeanloz (1989), while
Olinger (1976) have shown the applicability of Equation 2 to describe static com-
pression data of solids. The values used for p,, Co, and S are provided in Table 3.
Theoretical densities of the monolithic ceramics were estimated correcting for
impurities where available. The bulk wave speeds were calculated from measured
ultrasonic data. The parameter S is calculated from the relation K = 4S - 1
where the pressure coefficient of the bulk modulus K to approximately 2 GPa has
been recently measured by Manghnani (1993) for the present ceramics.

Table 3:
Properties for Ultrasonic Compression Curves

Theoretical Bulk
Material Densit Velocity S

kg/mi m/s

SiC 3210 8190 1.4

TiB 2  4540 6960 1.0

B4C 2550 9570 1.4

Hydrodynamic data points in Figure 3 for silicon carbide in the range of
25-30 GPa lie near or slightly to the left of the ultrasonic compression curve. The
data provides further support for the high sustained shear strength of this ceramic
under the confining pressure states induced by shock compression.

Measured hydrodynamic states for titanium diboride shown in Figure 4 are
also consistent with extrapolated ultrasonic compression. The slightly higher
upward trend is probably not significant in considering experimental error. The
data also indicates a considerable sustained shear strength in titanium diboride.

Shock compression data in Figure 5 on boron carbide and copper mixtures
provide compression states for boron carbide which are in reasonable agreement
with the extrapolated ultrasonic compression curves. The dramatic loss of strength
on the Hugoniot is a unique characteristic of this ceramic.

Thus, to date, the new technique for measuring high-pressure hydrody-
namic states of ceramics has yielded no surprises. The data are in reasonable
agreement with extrapolated ultrasonic measurements. Uncertainties within the
experimental method have been found to be more serious than initial analysis indi-
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cated. Further efforts will focus on improving the test technique and in analysis of
the release wave data which has remained largely unexplored.
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I. INTRODUCTION

Strengths of solids may be defined in various ways i.e., under
plane shock wave propagation , magnitude of Hugoniot Elastic Limit
(HEL), i.e. limit of elastic deformation, magnitudes of shear stresses
maintained as a function of compressive stress, i.e shear strength,
and spall threshold provide three ways of defining strength. These
three definitions do not necessarily form a mutually exhaustive set.
Knowledge of these three, however, are essential to tailor the use of
ceramics under shock / impact loading. Shear strength of a solid
under plane shock wave loading is determined through (i)
measurement of of shear wave velocity under a given shock
compressed stress state or shear stress - shear strain under oblique
impact condition or (ii) simultaneous measurements of longitudinal
and lateral stresses under normal impact or (iii) measurement of the
difference between the shock Hugoniot stress and hydrodynamic
pressure at a given value of strain i.e. volume change. The values of
shear strength as a function of stress increase in a predictable way up
to and including the HEL of a solid. The values of shear strength at
stresses larger than the HEL may remain constant, or increase or
decrease with an increase in the values of stress in a non-
transforming solid. The present work was initiated to determine the
shear strength of aluminium nitride (AIN) by means of the third type of
measurements to asses the strength of AIN. This requires shock
Hugoniot data and the hydrodynamic compression data for the
estimation of the shear strength of AIN. Shock Hugoniot of AIN have
been determined by Rosenberg et al [1] and Grady [2] on a material
manufactured by Dow to 35 GPa. In the present work, the equation of
state of the same material is determined through the measurements of
longitudinal and shear wave velocities at high pressures to 0.7 GPa.
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by an ultrasonic technique [3]. The values of shear strength
estimated in this work are compared with the values of shear strength
obtained from the simultaneous longitudinal and lateral stress
measurements by Rosenberg et al [1]. This permits one to evaluate
the consistency of these two techniques to determine the shear
strength of a material under plane shock wave loading. The present
work also judiciously applies this technique to determine the
strengths of two other AIN under plane shock wave loading which
have been investigated by Nakamura et al. [4]. It compares the
deduced strengths of these AIN with the nature of deformation
suggested by the authors of Ref.4.

II. MATERIAL AND ULTRASONIC EXPERIMENTS

The composition, density and the elastic properties of AIN in
this investigation are given in Table 1.

Table 1. Composition (wt. %), density (mg/m 3 ), values of elastic
constants (GPa), and their pressure derivatives for AIN.

Present Manghnani Gerlich et al Xia et al.a
work Ref.5 Ref.6 Ref.7

Composition
AIN 98.62 98.62 94.97 99.99
Oxygen 1.0 1.0 2.0
Carbon 0.3 0.3 0.03
Y2 0 3  3.0
Density 3.23 ± 0.01 3.25 ± 0.06 3.31 3.255
Porosity (%) 1.0 1.0 <1.5 0
Ko 202±2 193-196 160 185±5

o 0125 ± 1 129.5- 130. 131
K'0  3.68 ± 0.62 4.12-5.0 5.2 ± 4.0 5.7 1.0
ii' o 4.24 ± 0.78 0.26 - 0.27 0.2 ± 2.0
a. These are isothermal values the remaining are adiabatic.

Hydrodynamic compression of of AIN was generated from the
transit time measurements of longitudinal and shear waves to 0.7
GPa. The transit times of these waves were measured by an
ultrasonic technique known as pulse echo overlap technique [3]. The
ultrasonic measurements were performed at 5 MHz with lithium
niobate transducers. The transit times were measured with a
precision of ±10 ns. A Birch - Bridgman pressure cell system
manufactured by Harwood, with a 50 - 50 pentane - isopentane
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pressure medium was used to generate pressure. The magnitude of
hydrostatic pressure was measured by a calibrated manganin coil.
The specimens of AIN were cubic in shape with a linear dimension of
1.2977 ± 0.0002 cm. The transit time measurements at high
pressures were replicated five and three times for the longitudinal and
the shear wave velocities, respectively. The ultrasonic transit times of
longitudinal and shear waves were analyzed following an iterative
scheme developed by Dandekar [8] to calculate the values of elastic
constants at elevated pressures. These data yield the magnitudes of
bulk and shear moduli of AIN and their pressure derivatives at room
temperature.

Ill. HYDRODYNAMIC COMPRESSION OF ALN

The values of relative changes in the transit times of
longitudinal [TI (P)],and shear wave [Ts (P)] velocities obtained from
the measured transit times of longitudinal and shear wave velocities
in AIN as a function of pressure [P] are shown in Fig. 1.
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Figure 1. Relative changes in the transit times as a function
of pressure in AIN.

The least squares fits to these data are represented
respectively by
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ATI = {TI (P)- TI (0)} / TI (0)

= [- 0.1159±0.0023] x 10 3 x P (1)

and
ATs {TS (P) - Ts (0)} / Ts (0)

= [- 0.15888 ± 0.0102] x 10 -3 x P. (2)

In the above relations pressure P is in GPa. The values of linear
correlation coefficients (r) for these modes of elastic wave
propagations as represented by the above two relations are 0.9885
and 0.9712, respectively. It is obvious that the changes in transit
times over a range of 0.7 GPa are very small. The relations (1) and
(2) are used to estimate the transit times of longitudinal , shear and
bulk sound wave velocities in AIN at various pressure to 0.7 GPa.
These estimates are in turn used to calculate the values of bulk and
shear moduli at high pressures by following the iterative procedure
due to Dandekar [8]. The values of pressure derivatives of the bulk
and the shear moduli of AIN calculated in this manner are given in
Table I.

The hydrodynamic compression curve of AIN is obtained from
the ultrasonic measurements by using the equation of state based on
linear relationship between shock (U) and particle (u) velocities
namely,

U = CO + s u (3)

P = poC0211/ (1 -sq )2 (4)

and ri=1-V/Vo. (5)

where p, C, and V are density, bulk sound wave velocity, and volume,
respectively. The subscript 0 denotes the initial values of the various
parameters under the ambient condition. An additional relation
required to construct the compression curve is that between s and the
pressure derivative of the adiabatic bulk modulus (Ko') derived by
Ruoff [9] and is

Ko'= 4s- 1. (6)

There is no loss of generality in using the above equation of
state since it has been shown to be equivalent to Birch - Murnaghan
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equation of state based on Eulerian finite strain formalism [10]. The
hydrodynamic compression curve of AIN generated in this manner is
shown in Fig. 2.

20 \ -
2__Present work

- 16 ----- Manghnani
C"" \ ........... Xia et al.

-12 "- - -Gerlich et al.

CO 8" " "-

04

0
0.9 0.92 0.94 0.96 0.98 1

Volume ratio
Figure 2. Hydrodynamic compression of AIN.

Gerlich et al [8] measured pressure and temperature
derivatives of hot pressed AIN containing 3 % Y20 3 by weight.
These authors obtained the pressure derivatives of the elastic moduli
of AIN through the measurements of the variations of three sound
wave velocity modes { Wi; i=1,3]} with uniaxial compression and the

stress derivatives { (Pa Wi2 )'; i= 1,3 } at zero stress. In the preceding
W 's are the natural velocities. Mode 1 refers to longitudinal mode
propagation normal to the uniaxial compression direction. Modes 2
& 3 refer to shear mode propagations normal to the uniaxial
compression direction with polarization parallel and normal to the
uniaxial compression direction, respectively. The three stress
derivatives { (Po Wi 2 )'; i= 1,3) are related to the three independent
third-order elastic constants and the two second-order elastic
constants of an isotropic solid [11]. These three third- order elastic
constants are in turn related to the hydrostatic pressure derivatives of
the second-order elastic constants. The explicit relations between
the stress derivatives { (p0 Wi 2)'; i= 1,3 } and third and second order
elastic constants and the pressure derivatives of the second order
constants are given in Ref.6, and 11. While this is a viable technique
to obtain the values of third-order elastic constants it is not a preferred
method to determine the pressure derivatives of the second-order
elastic constants because the precision with which the values of the
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three third-order elastic constants can be determined is always
inferior to determinations of the second-order constants. This is
reflected in the precisions of the pressure derivatives of the bulk and
shear moduli of AIN reported by Gerlich ef al [6] (Table I).

Recently another set of ultrasonic wave velocity measurements
on AIN manufactured by Dow have been made as a function of
pressure by Manghnani [5]. The properties of AIN obtained from
various sources are summarized in Table I. The compression curves
for AIN obtained from the ultrasonic wave velocity measurements at
high pressures on Dow material and on doped material from the
measurements of Gerlich et al [6], and on a pure material by in-situ
high pressure X-ray diffraction measurements of Xia et al [7] are
shown in Fig.2.

Fig. 2 shows that the compression curves of relatively pure AIN
obtained in the present work and Refs. 5 and 7 are consistent with
each other; differences are within the precision of the respective
measurements on AIN . However the compression curves of pure
and doped AIN do differ from one another as shown in Fig 2. The
observed difference in the compression of these two AIN arise due to
large differences in the magnitudes of the initial bulk modulus, 202 as
compared to 160 GPa in Ref.8. The effect of the pressure
derivatives of the bulk modulus (3.68 as compared to 5.2 ) is minor
on the compression curves of AIN . An interesting feature discerned
in Table I is that the values of shear moduli for the pure and doped
AIN do not differ significantly from one another.

IV. SHEAR STRENGTH OF ALN.

Shear strength of AIN has been determined through the
simultaneous measurements of longitudinal [a,] and lateral [C2]
stresses under plane shock wave loading to 18.5 GPa by Rosenberg
et.al [1]. These stresses were measured by manganin foil gages.
The gages used for the measurements of longitudinal stresses were
around 5-10 mm in lateral dimensions. The gages used for the
measurements of lateral stresses were 2 mm wide in order that a
steady stress level is achieved in a shorter interval of time. The shear
strength [r] is thus simply the half the value of the difference in the
measured values of a1 and 0 2. The values of shear strength as a
function of compressive stress determined by these investigators are
given in Table 2.

The values of shear stress / shear strength increase as the
magnitude of longitudinal stress approach the value of the Hugoniot
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Table 2. Shock data on AIN from Reference 1.

Longitudinal Particle Lateral Shear Shock Volume

Stress# Velocity# Stress# Stress Velocity* Ratio*

(GPa) (km/s) (GPa) (GPa) (km/s)

16.8_±0.3 8.8_±0.1 4.0_±0.2
16.1 ±_0.3 8.7± 0.1 3.7± 0.2
10.6± 0.2 0.296 15.25 1.0 0.973
11.7 ± 0.2 0.354 8.72 0.6 0.9651
12.5± 0.2 0.401 7.52 0.5 0.9585
13.4± 0.2 0.43 7.91 ± 0.5 0.9541
14.7 ± 0.3 0.494 7.48 0.5 0.9446
17.0± 0.3 0.605 7.16 0.5 0.9275
18.5± 0.5 0.73 6.27 0.4 0.9002
10.0_±0.3 3.0_±0.1 3.5_±0.2
13.3 ± 0.3 6.4 ± 0.2 3.4± 0.2
11.5± 0.2 0.335 4.5± 0.1 3.5± 0.2 10.31 ± 0.7 0.9659

6.7 ±_0.1 1.7 ±_0.1 2.5_±0.1 0.9819

7.5_±0.1 2.6±0.1 2.4_±0.1 0.9798

8.0 ± 0.1 2.2 ± 0.2 2.9 ± 0.2 0.9784

9.4 ± 0.2 0.9746
# Table 2 in Ref. 1. * calculated from the data in Ref.1.

Elastic Limit ( HEL) i.e., 9.4 ± 0.2 GPa in AIN. The value of the shear
strength at the HEL is 3.5 ± 0.2 GPa. This value of the shear stress is
maintained in AIN at the higher stresses up to 16 GPa and at a stress
around 16.8 GPa the shear strength increases to 4.0 ± 0.2 GPa. This
increase in the shear strength at 16.8 GPa was suggested by these
authors to be related to the phase transformation in AIN observed by
Kondo et al [12] and Vollstadt et al [13] around 18 GPa. In other
words, the results of simultaneous measurements of the longitudinal
and lateral stresses in the shock wave experiments led Rosenberg et
al [1] to conclude that the deformation behavior of AIN is like that of an
elastic - plastic solid.
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Figure 3. Pressure/Stress vs Particle velocity in AIN.

Yet another way of inferring the deformation behavior of a solid
under plane shock wave loading is to estimate the value of shear
stress [r] sustained by the material from the difference between the
magnitudes of shock Hugoniot stress i.e., longitudinal stress and
hydrodynamic pressure at a given value of strain i.e. volume change.
This can be qualitatively inferred by plotting the measured values of
Longitudinal stress versus particle velocity for AIN from Ref. 1 and the
pressure-particle velocity locus obtained from our ultrasonic
measurements. The advantage of such a comparison is that one
does not have to perform any calculations on the data given in Ref, 1.
The locus for AIN, i.e., pressure [P] - particle velocity [u] coordinates
are obtained by using the density and the bulk sound wave speed
measured by these researchers (Table I) and the value of s derived
from the ultrasonic measurements discussed above. This yields the
following relation between the pressure and the particle velocity for
the material.

P = Po U u = P0 .(C0 + s u) u. (7)

This, then, represents the hydrodynamic states of AIN in
pressure - particle velocity coordinates. Fig. 3 shows a plot of the
measured values of longitudinal stress versus particle velocity in AIN
reported in Ref 1 and the hydrodynamic pressure -particle velocity
locus for AIN obtained from our ultrasonic measurements and through
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the use of Eq. (7). If the stress-particle velocity coordinates of AIN
reported in Ref. 1 converge towards the hydrodynamic loci it implies
that AIN is sustaining a smaller magnitude of shear stress with an
increase in the compressive stress. This result is consistent with the
calculated magnitudes of the shock velocities above its HEL i.e. 9.4
GPa because these values of the velocities are smaller than the bulk
sound wave velocity of AIN (Table 2). It has been shown by Graham
and Brooks [14] that in a material undergoing a significant loss of
shear strength under plane shock wave loading the values of shock
velocity will be smaller than its bulk sound wave velocity. Thus the
constancy of constancy of the shear strength estimates above the
HEL calculated from the difference between the measured
longitudinal and lateral stresses are inconsistent with the shock
Hugoniot of AIN reported in Ref. 1.

Grady [2] provided his shock data in AIN to 36 GPa. Estimates
of shear strength [tc] of AIN from the shock Hugoniot reported in Ref.2
and the hydrodynamic compression curve obtained in the present
work at a given compression/strain (q ) is given by Eq. (8).

"T = 0.75 x [y(Y() - P(q)] (8)

The results of these calculations (Fig.4 ) show that shock
Hugoniot data of Ref.1 and 2 when used in conjunction with the
hydrodynamic compression yield two radically different trends in the
the variation of shear strength with impact stress. Data obtained in
Ref.2 show that values of shear strength of AIN up to around 22 GPa
remain constant at around 2.8 ± 0.2 GPa i.e approximately the same
value as at its HEL. Data of Ref. 1 on the other hand shows a decline
in the shear strength but shows a trend similar to one observed in
Ref.2 if the shear strength is calculated from the difference between
their shock Hugoniot and the lateral stress measurements.

This observed discrepancy illustrates the pitfall of lateral stress
measurements when they are not checked for their consistency by
some independent set of measurements. The reasons for the above
mentioned discrepancies in the estimates of the values of shear
stress sustained in AIN may be rooted in the problems related to the
measurements of lateral stresses by means of piezoresistive gauges
like the manganin gages which have been investigated and reported
by Wong [15]. The reliability of the measurements of lateral stresses
especially above the HEL of a material is subject to uncertainty
arising from the fact that conservation relations of mass, momentum,
and internal energy for the one dimensional plane shock wave
propagation do not include the lateral stresses as a variable. Hence,
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Figure 4. Shear strength vs. impact stress in AIN.

above the HEL it is not possible to verify the accuracy or fidelity of
lateral stress measurements without knowing the properties of the
material a priori. In addition, Wong [151 has shown that the response
of a lateral stress gauge is affected by the property of the matrix
material in which the gauge is embedded and the emplacement
technique used to bond the gauge to the material being investigated.
Finally , Rosenberg and Partom [16,17] in analyzing and calibrating
the response of a lateral gauge assumed that the gauge material
deforms like an elastic-plastic material. It is clear that such an
assumption will not be valid if the matrix material deforms like a
hydrodynamic material i. e. fluid material because in such a situation
the calibration of the gauge based on its elastic - plastic behavior is
not applicable. Difference in the estimates of the shear stress
sustained by AIN as shown in Fig. 4 may be due to computational
scheme followed to calculate the value of the stress obtained from the
response of lateral stress gauge in the experiments conducted on AIN
and reported by Rosenberg et al. [1].

Nakamura et al. [4] reported results of their plane shock wave
experiments conducted on pure and Y2 0 3 (6.2 % by weight ) doped
polycrystalline samples of AIN to approximately 35 GPa. They
summarize the results of their experiments as follows:
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(i) The HEL of the pure and the doped AIN lie between 7.6 - 9.4
GPa and 7.8 - 9.8 GPa, respectively.

(ii) Whereas the pure AIN suffers a loss of comparatively large
shear strength above its HEL , the doped material maintains a fair
amount of shear strength above its HEL.

(iii) These materials do not show any evidence of the reported
phase transformation around 20 GPa reported by other investigators
[2,12,13].

(iv) the shock data of the pure and the doped AIN above their

respective HEL's are best represented by the following two linear

relations between the shock [U] and particle [u] velocities

U = 5.22 ± 2.11 u pure material (9)

U = 7.04 ± 1.29 u doped material (10)

The conclusions pertaining to the shear strengths of the pure and the
doped AIN are based on the the values of shock velocities for these
two materials given in Eqs. (9) and (10) compared to their respective
measured values of bulk sound wave velocities under the ambient
condition, i.e. 7.93 and 7.82 km/s. The pressure derivatives of the
bulk modulus of a material when a linear relation is found to exist
between shock and particle velocity can be obtained from Eq. (6).
The estimated values of the pressure derivatives of the bulk modulus
[Ko'] of the pure and the doped materials obtained from the values of
the slopes i.e., s in Eqs. (9) and (10) are 4.16 and 7.44, respectively.
The value of [K0 '] for the doped material is similar in magnitude to the
value determined from the ultrasonic measurements i.e., 3.7 - 5.2.
On the other hand a value of 7.44 for the pressure derivative of the
bulk modulus of the pure material is very large. Such a large value
for the pressure derivative of the bulk modulus for a material is
unusual unless it is undergoing a drastic change in its compressive
behavior as for example in the case of a phase transformation under
pressure. However, these investigators did not observe any
evidence of phase transformation to 35 GPa in their experiments.
Figure 5 and 6 show the measured values of stress vs. volume ratios
and the hydrodynamic compression curves for these two materials
calculated by using the the value of the pressure derivative of the bulk
modulus obtained in the present work and the respective values of
densities and bulk sound wave speeds measured by Nakamura et. al.
[4].

Fig. 5 shows that the pure material does lose a significant
amount of its shear strength above the HEL. Also the
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observed stress - volume ratio coordinates above 12 GPa lies below
the hydrodynamic compression curves of AIN obtained from the
ultrasonic data as well as from the shock wave data generated by
these investigators. In view of the above it is intriguing that the
Nakamura et al.[4] did not observe the massive phase transition in
their experiments observed by Kondo et al. [12]. The deformation
behavior of the doped material is initially like that of an elastic - plastic
material (Fig.6). However, this material also crosses the
hydrodynamic compression curve around 20-24 GPa. This crossover
pressure is larger but is suggestive of the occurrence of phase
transition in AIN even though these investigators did not observe the
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suggested phase transition in their experiments. The above is very
puzzling and remains inexplicable at present. However, if the
assumption that these crossover coordinates represent the pressure
at which the reported transformation in AIN is occurring then one may
say that the effect of doping AIN with Yittria is to change the
deformation behavior of AIN above its HEL and also change the
pressure of transition. This conjecture needs to be validated.

V. CONCLUSIONS

The present work shows that
(1) Whereas shock Hugoniot of AIN manufactured by Dow

determined by Rosenberg et al. [1] indicate a loss of shear strength
above its HEL the Hugoniot of this material determined by Grady [2]
does not indicate such a loss.

(2) The magnitudes of shear stress sustained by this material
obtained from the simultaneous measurements of longitudinal and
lateral stresses by means of manganin gages in Ref.1 show that the
material has not suffered any loss of its shear strength above its HEL.

(3) The results of shock wave experiments on pure and doped
AIN by Nakamura et al. [4] show that whereas the pure material
suffers a loss of its shear strength the doped material does not above
their respective HELs.

(4) The conclusions of (1) and (3) are also substantiated when
these shock data are analyzed in conjunction with the hydrodynamic
compression curve of AIN obtained through ultrasonic wave velocity
measurements at moderate pressures in the present work.

(5) The analysis presented in this work indicates that the
existing shock wave data on AIN manufactured by Dow are not
conclusive to determine shear strength of this material above its HEL
thereby its nature of deformation above the HEL remains unclear.
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Abstract

The strain rate dependence of the compressive strength of two
high purity aluminas produced by vacuum hot pressing and hot isostatic
pressing a 99.99% pure A120 3 powder has been investigated. Previous
results by the authors have suggested a strong rate dependence of the
compressive strengths of both of these aluminas over a strain rate range
from 10-4 to 103 sec1. One of these aluminas, designated JS-I, has
exhibited a uniaxial compressive strength which rose from 5.5 GPa at
10-4 sec-1 to 8.3 GPa at 103 sec-'. Although the compressive strengths
were lower in magnitude for the coarser grained alumina, designated as
JS-I1, it exhibited a similar rise in strength with strain rate. Recent results
from flyer-plate impact tests indicate that the Hugoniot elastic limit for
the JS-I alumina is about 11.9 GPa. Conversion to a dynamic uniaxial
yield strength suggests that yielding occurs at about 8.3 GPa for a strain
rate between 105 to 106 sec1. Of particular interest for the JS-I alumina
was its spall strength of 1.2 GPa after a peak precompression of three
times the HEL (36 GPa).
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Introduction

The importance of strain rate on the compressive fracture
strength of alumina has been the subject of several recent studies. One
key question in this work has been the contribution of plastic
deformation to the fracture process of alumina. Lankford1 studied the
commercial alumina Lucalox, produced by General Electric, over a strain
rate range from 10- to 103 sec-'. He observed a moderate strain rate
dependence of the uniaxial compressive strength over this strain rate
range. Based on his observation of deformation twins in this material, he
came to the conclusion that the uniaxial compressive fracture strength
of alumina at room temperature is closely related to the initiation of
plastic deformation in the material, similar to Rice's2 conclusion with
regards to the fracture of ceramics. Because alumina does not have
readily activated slip systems at room temperature under conditions of
uniaxial stress to accommodate any appreciable amount of plastic
deformation, the initiation of plastic flow quickly progresses to
microcracking and subsequent failure.

Cosculluela et al3 recently tested two commercially available
French aluminas and found a more pronounced strain rate dependence
than that observed by Lankford' in Lucalox. They used dumb-bell
shaped specimen geometries as opposed to the right circular cylinders
used by Lankford. However, contrary to Lankford's results, they
observed no evidence of plastic deformation.

The existence of plastic deformation in alumina under conditions
of uniaxial strain, such as are encountered in flyer-plate impact testing,
is gaining more widespread acceptance. There is, however, some
disagreement concerning some of the behavior of alumina under these
loading conditions. One area of controversy concerns the meaning of
the Hugoniot elastic limit (HEL) and whether it represents the onset of
widespread microcracking or widespread plastic deformation. A second
area of controversy which appears to be linked to the first concerns
whether a spall strength exists above the HEL in alumina. Munson and
Lawrence 4 tested Lucalox using flyer-plate impact techniques. They
observed negligible spall strength in this alumina at peak stresses above
the HEL and suggested that the HEL was therefore associated with the
onset of widespread microcracking. The argument they used was that
if the material did not contain extensive microcracks it should have been
able to sustain some tensile stresses as the material went into tension
due to the release waves. The lack of a spall strength suggests it was
extensively microcracked.
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However, recent work by Longy and Cagnoux5 has shown that
aluminas can exhibit spall strengths when shocked by as much as twice
the HEL. They looked at four different aluminas with purities of 99.7%
and another of 94% purity. In each material a spall strength was
observed above the HEL.

The lack of a general consensus on these issues may be a direct
consequence of the wide variations in the microstructures of the
aluminas being tested. The results presented in the present paper
describe the strain rate dependence of the compressive strength for two
high purity aluminas produced at Michigan Technological University
(MTU). One is a fine grained alumina called JS-I and the second is a
coarser, less isometric grained material called JS-II. Since these
aluminas have controlled variations in their microstructure, the influence
of the microstructure on some of the issues presented earlier will be
discussed.

Materials

Both of the MTU aluminas were produced by first vacuum hot
pressing a 99.99% pure alumina powder in graphite dies. No additions
of any kind were made to the powder. For the material called JS-I, the
vacuum hot pressing was followed by a hot isostatic pressing cycle in
high purity argon. The JS-11 material was subjected to a heat treatment
to induce grain growth before the hot isostatic pressing cycle. More
details with regards to the processing are presented in Staehler et al.6

Image analysis techniques were used to determine average grain
sizes and grain isometry. The JS-I alumina has an average grain size
of 1.48 pim with a shape parameter of 1.41. The JS-11 material has an
average grain size of 4.0 jim and a shape parameter of 2.15. The shape
parameter used to describe grain isometry was that suggested by Kibbel
and Heuer7. The value of 1.41 for JS-I is comparable to a rectangle with
a length to width ratio of 3:2. Using immersion techniques, the densities
of JS-I and JS-11 were determined to be 3.974 g/cc and 3.96 g/cc,
respectively. Transmission electron microscopy observations suggest
that the porosity in JS-I is predominantly within the grain interiors. JS-I1
includes some additional porosity on the grain boundaries.

Experimental Setup

The specimen preparation and experimental procedure for the
quasi-static and intermediate strain rate testing were presented in
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Staehler et al. 6 The flyer-plate impact tests which were conducted on
JS-I are divided into two types; tests above the HEL to measure the
HEL and spall strengths, and tests to recover the specimens intact after
being subjected to shock loading. Tests of each type were conducted at
Sandia National Laboratory and at the University of Dayton Research
Institute (UDRI). Velocity interferometer techniques (VISAR) were used
in the non-recovery tests at Sandia. A simple schematic of the test
configuration is shown in Fig. 1. The UDRI non-recovery tests were
performed using- manganin pressure gauges and are shown in Fig. 2.
More details on each of these techniques can be found in references by
Barker and Hollenbach 8 and Rosenberg et al,9 respectively.

Recovery tests both above and below the HEL were conducted
on the MTU JS-I alumina with the former being performed at Sandia and
the latter at UDRI. The recovery testing at either laboratory used only
velocity pins to measure projectile velocities. A simple schematic of the
Sandia recovery test setup is shown in Fig. 3. The specimen is encased
in a steel cylinder with a rear copper backing plate followed by a low
density foam. The steel cylinder served to contain the test specimen and
hopefully minimize the amount of fragmentation.

The recovery tests at UDRI used the configuration shown in Fig.
4. The design incorporated a rear surface momentum trap, star shaped
flyers, and a rag filled catch tube to stop the specimen.

Specimen and flyer plate dimensions are listed in Table 1 along
with some additional test parameters on the flyer-plate impact tests.
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Figure 1. Sandia VISAR test Figure 2. UDRI manganin gauge
schematic. test schematic.
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Results

The uniaxial stress compression test results as a function of
strain rate for JS-I and JS-11 were presented in Staehler et a16 but are
repeated in Fig. 5 for convenience. Included in the figure are the quasi-
static and intermediate strain rate results of Lankford' and the flyer-plate
impact results of Munson and Lawrence 4 for Lucalox. Also included are
the results of Cosculluela et al'° for the French alumina AL23. The plate
impact data for AL23 obtained from Cagnoux and Cosculluela'° indicates
an HEL of about 6.5 GPa for this alumina compared with the value of
9.1 GPa found for Lucalox. 4 The HEL data was converted into an
equivalent dynamic uniaxial yield stress using the relationship

2

aY=2 7 GHEL

where CS and C, are the shear and longitudinal sound speeds,
respectively, and aHEL is the measured HEL.

The quasi-static compressive fracture strengths of JS-I and JS-11
are shown in Fig. 6 as a function of grain size. Included in the figure are
comparable data for some commercially pure (99.5%) aluminas taken
from a report by Weyand." The JS-I and JS-11 aluminas do not appear
to follow the same general trend exhibited by the commercial aluminas,
suggesting that a different Hall-Petch type relationship applies.

Following the proposal of Rice,2 the theoretical yield strengths
deduced using Knoop microhardness indentations were measured for
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JS-I and JS-ll. Figure 7 shows the uniaxial compressive strength of each
of these aluminas as a function of their respective theoretical yield
strengths. If the proposal of Rice is true, the upper limit to the
compressive yield strength should be the theoretical yield strength of the
material and the points should fall on the line in the figure. This is
approximately the case for JS-I, but JS-11 falls well below the line,
suggesting that the strength of this material is controlled by factors other
than the yield strength.
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The VISAR data for the two Sandia HEL tests are shown in Fig.
8. For specimen B44 the HEL is about 11.9 GPa and the peak stress is
about 36 GPa. Besides the high HEL, the interesting aspect of these
data is the spall signal which is significant for a ceramic prestressed to
three times its HEL. This signal corresponds to a spall strength of about
1.2 GPa. Specimen B45 was subjected to a peak stress just above the
HEL. In contrast to B44, it exhibited a lower spall strength (=0.5 GPa).

The HEL type flyer-plate impact tests at UDRI were intended to
measure the HEL of the JS-I alumina and the decay, if any, of the HEL
with specimen thickness. Three different specimen thicknesses were
used; 6, 9, and 12 mm. The results are summarized in Fig. 9 and
indicate a slight decay (<8%) of the HEL in going from 6 mm to 9 mm.

The Sandia recovery specimen was shocked to a peak stress of
about 25 GPa. The specimen was extensively fragmented despite the
steel confinement. It was possible, however, to make TEM foils from
some of these fragments. These foils showed evidence of enhanced
plastic deformation through the presence of dislocation structures within
the microstructure.
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Figure 8. Sandia interface velocity Figure 9. HEL decay with
data. propagation distance.

The UDRI recovery specimen, which was shocked to a stress
level below about half of the HEL, was also fragmented. However, the
fragments themselves were fairly well intact compared to the Sandia
recovery test specimen. The fragmentation that did occur is believed to
be a consequence of the recovery technique used and is therefore not
thought to be representative of the material response to the initial
compressive loading. TEM foils made from the UDRI test fragments
revealed no noticeable increase in dislocations or twinning over
undeformed material. This is not surprising due to the relatively low
compressive stresses encountered in the test (<½/2HEL).
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Discussion

The high strength of the JS-I alumina is attributed to its controlled
microstructure. Microstructural characteristics known to be important for
high strength include the high purity, fine, isometric grain structure, and
high density exhibited by JS-I. Other microstructural characteristics that
control the strength may be less obvious and include the distribution of
the porosity, the relative orientation of adjacent grains, and the lack of
any glassy phases on the grain boundaries. Krell and Blank 12 have used
replicating techniques to carefully study the grain boundaries of high
purity aluminas they produced by sintering. They found that there were
fine micropores on the grain boundaries which they believe controlled
the strength of the material. Although similar work on the nature of the
grain boundaries in JS-I has not been completed, it is believed that the
presence of such fine grain boundary micropores has been greatly
reduced as a result of the processing techniques used to produce JS-I.
The reduced grain boundary porosity results in a much higher grain
boundary toughness between adjacent grains which translates into the
greater observed macroscopic strengths. The lack of any impurities at
the grain boundaries further increases the grain boundary toughness.

Another microstructural feature that may be important concerns
the number of special grain boundaries in the material. It is known that
two adjacent grains can form a stronger interface if the lattice structures
have certain favorable relative orientations across the grain boundaries.
If more of these special boundaries exist in the JS-I alumina compared
to the commercial aluminas, it may also account for the higher
strengths. The greater incidence of special grain boundaries in JS-I may
result from the fine grain size and "clean" grain boundaries maintained
throughout the processing scheme. However, additional work to confirm
this hypothesis is necessary.

The reduced strength of JS-11 relative to JS-I results from the fact
that the microstructure of JS-11 is more similar to commercial aluminas
than it is to JS-I. For example, the lower density of JS-11 may lead to an
increase in the porosity along the grain boundaries which will reduce the
grain boundary toughness. The coarser, less isometric grain structure
of JS-II, combined with its lower density relative to JS-i, may outweigh
any gains from its high purity and the presence of special grain
boundaries.
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The magnitude of the spall strength in the JS-I alumina at three
times the HEL was not expected. Similarly, the very low spall strength
of the JS-I alumina tested at a peak stress just above the HEL was a
surprise in view of the very high spall strength observed at three times
the HEL. These results suggest that the spall strength is a function of
the peak stress to which the specimen has been subjected. Recently
Longy and Cagnoux5 have conducted plate impact tests on alumina to
study the influence of peak stress on spall strength. They reported that
within their experimental uncertainty the spall strength was found to be
constant from the threshold value out through twice the HEL. It is
worthwhile to review these results again and the data of Longy and
Cagnoux are included in Fig. 10 along with the JS-I data. Despite
experimental uncertainty, the spall strengths for both of the aluminas
they tested consistently show a drop near the HEL. The drop is as much
as 50% for the one alumina and about 25% for the other. If such a drop
is real, the data suggest that the lower confining stresses to which the
specimen is subjected when the peak stress is near the HEL is not
sufficient to prevent microcracking within the specimen.
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Figure 10. Spall strength with
peak stress.

In the past the HEL of alumina has been associated with the
onset of widespread microcracking. This was based on the apparent
lack of a spall strength above the HEL in alumina such as Lucalox 4.
However, Longy and Cagnoux5 argued that the presence of a non zero
spall strength above the HEL was evidence that the HEL was associated
with the onset of plastic deformation. Their X-ray diffraction studies on
deformed specimens showed that an increased dislocation density was
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present. Also, using the star shaped plate impact design of Kumar and
Clifton 13, Longy and Cagnoux were able to recover specimens intact with
no evidence of microcracking in their higher purity specimens tested at
stresses up to twice the HEL.

Our results support the contention that the HEL is associated with
the onset of plastic deformation rather than a state of general
microcracking. The TEM results of the JS-I recovery specimens showed
no evidence of plastic deformation below the HEL but there was
dislocation activity above the HEL. This is consistent with previous
studies in which plasticity was observed in shock loaded sapphire14 and
polycrystalline alumina1 5. The presence of the large spall strength of the
JS-I at three times the HEL also supports the argument that the material
has not undergone a state of general microcracking. The low spall
strength near the HEL is not fully understood at this time.

The data in Fig. 9 indicate a decay of the HEL. This is consistent
with the results of several recent investigations on alumina but is in
disagreement with the findings of Cagnoux and Longy16. A decay of the
HEL is reasonable if the HEL is indeed associated with plastic
deformation. Furthermore, because of the high stresses around localized
stress concentrations such as voids, plastic deformation or
microcracking may occur at these locations at a lower applied stress, so
that as the elastic wave front encounters these defects, a portion of the
elastic energy is lost.

Conclusions

The higher purity JS-I and JS-II aluminas show a greater strain
rate sensitivity of the uniaxial compressive strength than the commercial
aluminas shown in Fig. 5. In the case of JS-I the strengths are also
significantly higher than those of the commercial aluminas. For JS-11 the
strength at the lowest strain rates was below those of the commercial
aluminas and is not well understood. It may be a consequence of the
increased porosity present in JS-II plus a more anisometric grain
structure.

The observed dependence of the spall strength upon the peak
stress, shown in Fig. 10, suggests that two competing processes may
be involved in the deformation mechanisms of alumina in flyer-plate
impact tests. At peak stresses in excess of the HEL, the high spall
strength combined with TEM observations of dislocation activity
substantiates the conclusion that plastic deformation dominates. The
high pressures associated with these peak stresses suppress the
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formation of microcracks, enhance the tendency for dislocation activity,
and results in a high spall strength. When the peak stresses are
comparable to the HEL, there is an increased tendency for the formation
of microcracks due to the reduced confining pressures, as evidenced by
the significantly reduced spall strength. The JS-I data in Fig. 9 combined
with the data of Rosenberg et a19 demonstrates the existence of a
precursor decay. This can be explained by localized plasticity or
microcracking near defects even though the macroscopic response is
elastic. The decay of the HEL with propagation distance appears to
reach a stable value at about 9 mm.

Table 1. Specimen, flyer and test parameters for JS-I plate impact tests.

JS-l Spec. Spec. Flyer Flyer Flyer Test Peak
Spec. Width Diam. Type Width Vel. Type Stress
ID (mm) (mm) (mm) (krn/s) (GPa)

B44 6.261 51 JS-I 2.802 1.855 HEL" 36

B45 6.230 51 JS-l 2.804 0.587 HELU 13

B46 6.220 51 Cu 3.17 0.765 HELb 31

B49 9.108 51 Cu 3.17 0.789 HELb 29

B50 12.192 51 Cu 3.17 0.790 HELb 29

B47a 2.4 6.3 Al 1.5 2.00 Rec' 25

B40B 2.906 38 Cu 2.0 0.098 Recd <6

a baC dat Sandia, at UDRI, c recovery test at Sandia, recovery test at UDRI
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Introduction

The need to predict the macroscale behavior of composite mate-
rials has led to the development of multiple-scales homogenization [1-2],
effective medium and self-consistent theories [3], variational-bounds
theories [4], the differential scheme [5], the method-of-cells [6], and oth-
ers. An alternative to these methods will be demonstrated which is
based on the idea of degree-of-freedom (DOF) reduction in spatially-dis-
cretized models of the heterogeneous material. This approach avoids
both the periodic-media and the global boundary-layer restrictions which
plague current deterministic-material-oriented methods of homogeniza-
tion/smoothing, such as multiple-scales. It has the additional advantage
that computer implementations of the method are both straightforward
(involving only matrix manipulations) and independent of the microge-
ometry, with no requirement of homogenization/smoothing methodology
expertise. To use the method to smooth the dynamic mechanical behav-
ior of a composite material, one would discretize the mathematical mod-
el of the composite spatially, using standard finite element techniques
and sufficiently fine resolution so as to fully "capture" the heterogeneity
of the composite. This produces a finite, but large number of spatial de-
grees-of-freedom, with time left as continuous. In the case of linear-re-
sponse systems with nonevolving-microgeometries the resulting
spatially-discretized model will have the universal form of a matrix differ-
ential equation in time with a mass, possibly a damping, and a stiffness
matrix. The method smooths by eliminating most of the degrees-of-free-
dom, producing for such cases much smaller mass, damping (if initially
present), and stiffness matrices. This reduced-DOF model can be inter-
preted as a coarse-mesh, spatially-discretized model of an equivalent
single-phase material whose predictions are smoothed versions of the
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corresponding original (fine-mesh) model's predictions. The method is
one of the products of a new theory of condensation model reduction [7]
which itself evolved from earlier model reduction work [8]. (A model re-
duction process mathematically produces a simpler model from the orig-
inal complex model such that the simpler model contains only the
"essential physics" of the physical system. In the special case of com-
posites the complexity arises from the intricate spatial heterogeneity.)
The methodology is so recent that no computational results based on the
approach have yet been carried out other than the preliminary laminate
cases presented in this paper. One of the three laminates chosen is the
same as that used by Randles [9] so that comparisons with his results
are possible.

Method Description

The introduction of more generality than is needed to understand
the specific cases considered later in this paper seems counter to brevity
and clarity. The methodology of [7] will hence be correspondingly spe-
cialized in its reproduction here. The method will be described for the
special case of the linear, mechanical response of a system with negli-
gible body forces, a nonevolving microgeometry, and a boundary con-
sisting of prescribed-load-history (and possibly load-free) regions. The
spatial discretization of the model of such a system leads to the generic
form

Miý = Su +f, (1)

where the constant mass and stiffness matrices are given by M and S
respectively, the dots signify time derivatives, u represents the displace-
ment response, and f represents the (global-boundary) loads driving the
system. The nodes of the spatial discretization are divided into "master"
and "slave" nodes, the degrees-of-freedom of the slave nodes being the
ones targeted for elimination. (The master nodes must include all the
loaded boundary nodes.) Let the rows and columns of M and S, and the
rows of f, be permuted and the results then partitioned as

F11 M127 (2)
M21 M22J
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F11 S12]

S2 1 S2 2j

[12 
(4)

such that Mll, Sll, and f 1 are the submatrices associated with the mas-
ter nodes. The mass and stiffness matrices of the reduced-DOF system
are given in terms of the above submatrices as

Mred = Mll + M 12 B 0 - S 12 B 1  (5)

Sred = Sll + S12Bo ' (6)

where the matrices B0 and B1 are defined as

BO = - (S22) 1S2 1  (7)

B1 = (S22)-1 (M 21 + M 22 Bo) (8)

The reduced-DOF model takes the form

MredV = S redV +fl , (9)

where v is defined at the master nodes. A smooth interpolation, such as
a cubic spline for one-dimensional cases, of v's components onto the
slave nodes provides a smoothed version of the solution to the original
problem (1). More importantly, the method has the solution-reconstruc-
tion attribute, similar to multiple-scales homogenization, whereby one
can recover the fluctuations as well. Solutions u for (1) can be approxi-
mately reconstructed from solutions v for (9) by

Upermn = + (10)

where Uperin is the permuted version of u. The matrices CO and C1 are
defined by
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Co = B1 (Mred)-1 (11)

C 1 = B0 + CoSred (12)

The process of validating the method for the cases of this paper consists
of comparisons of "brute force" solutions to (1) with those, to be referred
to as "reconstructed" solutions, which are obtained from solving (9) and
using (10).

Alternating-Steel-Polystyrene Laminate Results

Dynamic laminate-response predictions were obtained for three
laminates, each consisting of alternating layers of 304 stainless steel
and polystyrene, starting with steel at the extreme left layer (spatial ori-
gin) and ending up with polystyrene at the extreme right layer (backface).
As in [9], 304 stainless steel was taken to have a mass density of 7.9 gm/
cm 3 and an acoustic wave velocity of 0.57 cm/microsecond, the modulus
value being density times wave velocity squared, and the polystyrene
was taken to have a mass density of 1.05 gm/cm 3 and a wave velocity
of 0.299 cm/microsecond. (The polystyrene wave velocity value used
was the readjusted one from [9].) The one dimensional response trans-
verse to the layers was computed for a load-free right side and a left side
with load history of zero load for times less than zero and a constant load
of 0.001 gm/cm-microsecond 2 for times greater than or equal to zero.
(Body forces were ignored.) Initial displacements and velocities were
taken to be zero.

The solutions to (1) and (9) for each of the laminate cases were
obtained using a fourth order Runge-Kutta method. The M and S matri-
ces were obtained, for each of the laminate cases, by control-volume-in-
tegration based finite difference methods [10] of spatial discretization.
Five nodes per laminate layer (spaced evenly within the layer interior)
and, additionally, one node at each boundary, were used. All program-
ming was implemented in Mathematica.

Six-Layer Periodic Laminate

The case studied in [9] is that of a six layer periodic laminate,
three layers each of steel and polystyrene, where the steel layer thick-
ness is 0.1524 cm and the polystyrene layer thickness is 0.08 cm. A plot
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of layer thickness versus layer number (numbered from left to right) is
given in Figure 1.

0.15

0.14

0.13

0. 12

0.11 i
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0.09

0.08

Figure 1. Layer thickness (cm) vs. layer number for
six-layer periodic case.

The spatially-discrete model resolving the spatial heterogeneity has 32
DOF, one DOF per node. Reduced models were obtained from this
which had 8 and 4 DOF, respectively. Master nodes consisted of the cen-
tral node for each of the six layers and the two boundary nodes for the 8
DOF case. Master nodes consisted of the central node for each of layers
2 and 5, and the two boundary nodes, for the 4 DOF case. A constant
time step value of 0.0126 microseconds was used in this case.

The backface (right boundary) velocity history predicted by the 32
DOF model is given by Figure 2. The signal arrival time is quantitatively
correct and the response shape is in general qualitative agreement with
that of [9] except for the dips in the "steps" of the "staircase".

0.0015

0.001

0.0005

1 2 3 4 5 6 7

Figure 2. Backface velocity (cm/microsecond) vs. time (microseconds)for
32 DOF model of six-layer periodic laminate.

The transient was taken to 600 time steps. Early, middle, and later times
were chosen from Figure 2 for plotting the six-layer transient cases. The
case for the reduction to 8 DOF is given by Figure 3.
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Figure 3. 6 LAYER PERIODIC. Plots a, c, and e: Full (32) DOF model solution
minus reconstructed solution of reduced (8) DOF model. Plots b, d,
and f" reconstructed solution (dashed) and full DOF model solution
(solid). Time is in microseconds.

The placement and number of DOF retained in this case allowed for
good accuracy in the reconstructed solution in comparison to the full
DOF solution. The infinity norm of the difference between the full DOF
solution and the reconstructed solution fluctuated, its largest value of
about 4 x 10-5 being obtained once, but its value more typically being 1.5
x 10-5 to 3 x 10-5 (sometimes smaller). The fluctuations in time of the
norm included times for which its value actually decreased.
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The plots at the same three time values as above for the reduction
to 4 DOF is given in Figure 4. There is a drop in accuracy for the recon-
structed solution from the 4 DOF model in comparison to the previous 8
DOF model, as is to be expected.
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a) Difference for time = 1,563. b) Full/reduced DOE for time = 1.563.
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Figure 4. 6 LAYER PERIODIC. Plots a, c, and e: Full (32) DOF model solution

minus reconstructed solution of reduced (4) DOF model. Plots b, d,

and f. reconstructed solution (dashed) and full DOF model solution
(solid). Time is in microseconds.

The results of these, and other cases not reproduced here, seem to in-
dicate that the reconstructed solution accuracy is sensitive to retained-
DOF (master node) placement, especially when the number of master
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nodes is small, as one might expect. The placement choice probably de-
termines which modes are accurately "captured" by the process. In a few
trial cases where the master nodes were "bunched" and few in total num-
ber, the accuracy was good in the "bunched" region, but quite poor else-
where.

Six-Layer Non-periodic Laminate

The response of a six layer non-periodic laminate, three layers
each of steel and polystyrene, was calculated using 32 degrees-of-free-
dom. The layer thicknesses of the laminate varied with layer number ac-
cording to the plot in Figure 5. Reduced models were obtained from this
which had 8 and 4 DOF, respectively. Master nodes consisted of the cen-
tral node for each of the six layers and the two boundary nodes for the 8
DOF case. Master nodes consisted of the central node for each of layers
2 and 4, and the two boundary nodes, for the 4 DOF case. A constant
time step value of 0.00988 microseconds was used in this case.

0.12A

0.08

0.06

Figure 5. Layer thickness (cm) vs. layer number for
six-layer non-periodic case.

The backface velocity history predicted by the 32 DOF model is
given by Figure 6. The lack of periodicity has resulted in a much smooth-
er "staircase".
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0.0015

0.001
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2 4 6 8

Figure 6. Backface velocity (cm/microsecond) vs. time (microseconds)for
32 DOF model of six-layer non-periodic laminate.
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The transient was taken to 800 time steps. The six-layer, non-periodic
32-to-8-DOF reduction case is plotted at the previous three time values
in Figure 7.
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Figure 7. 6 LAYER NON-PERIODIC. Plots a, c, and e: Full (32) DOF model
solution minus reconstructed solution of reduced (8) DOF model.
Plots b, d, andf. reconstructed solution (clashed) and full DOF model
solution (solid). Time is in microseconds.

The three corresponding plots for the reduction to 4 DOF are given in
Figure 8.
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Figure 8. 6 LAYER NON-PERIODIC. Plots a, c, and e: Full (32) DOF model
solution minus reconstructed solution of reduced (4) DOF model.
Plots b, d, and f" reconstructed solution (dashed) and full DOF model

solution (solid). Time is in microseconds.

The 8 DOF reconstructed solution's accuracy, as measured by the infin-
ity norm of the difference between the full DOF solution and the recon-
structed solution, behaved very similarly to that for the 8 DOF periodic
case. The 4 DOF reconstructed solution lost accuracy, from that of the 8
DOF, to a level comparable to the 4 DOF periodic case.
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Twelve-Layer Non-periodic Laminate

Figure 9 gives a plot of the layer thicknesses of a twelve layer non-
periodic laminate versus layer number. The response of this

0 16

0.14

0.12

0.06

0.06

Figure 9. Layer thickness (cm) vs. layer number for twelve-layer non-periodic case.

laminate, with six layers each of steel and polystyrene, was calculated
using 62 DOE The reduced model obtained from the 62 DOF model has
5 DOF Master nodes consisted of the central node for each of layers 3,
7, and 10, and the two boundary nodes, for this case. A constant time
step value of 0.00988 microseconds was used in this case.

The backface velocity history predicted by the 62 DOF model is
given by Figure 10. The "staircase" is totally absent.

0.002

0.0010

0.001

0.000 T

2 4 6 8 10 12 14

Figure 10. Backface velocity (cm/microsecond) vs. time (microseconds) for
62 DOF model of twelve-layer non-periodic laminate.

The transient was taken to 1400 time steps. Figures 11 and 12 contain
plots for six times from the history of the laminate response. The under-
shoot of Figure 15b (and earlier) has disappeared by the 1.887 micro-
second value of Figure 16b. The infinity norm of the difference between
the full DOF solution and the reconstructed solution fluctuated in time,
attaining its largest value of about 4.5 x 10-4 only once; its value more
typically being less than 4 x 10-4 (sometimes much smaller). As in the
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g) Difference for time = 7.233. h) Full/reduced DOF for time = 7.233.

Figure 11. 12 LAYER NON-PERIODIC. Plots a, c, e, and g: Full (62) DOF mod-
el solution minus reconstructed solution of reduced (5) DOF model.
Plots b, d, f and h: reconstructed solution (dashed) and full DOF
model solution (solid). Time is in microseconds.
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previous cases, the fluctuations in time of the norm of the difference in-
cluded times for which its value decreased.
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0.0001 I0.0075

0.007
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0.00055'

a) Difference for time = 9.388. b) Full/reduced DOF for time = 9.388.
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0.20,2 0.4 .6 0.8 1 1.2 1.4

-0.0001 .. . . .

c) Difference for time = 11.364. d) Full/reduced DOF for time = 11.364.

Figure 12. 12 LAYER NON-PERIODIC. Plots a and c: Full (62) DOF model so-
lution minus reconstructed solution of reduced (5) DOF model. Plots
b and d: reconstructed solution (dashed) and full DOF model solution
(solid). Time is in microseconds.

The 12 layer laminate results show that 5 DOF, reasonably positioned,
can maintain a high degree of fidelity to the predictive capability of a 62
DOF model. Hence, for this case, only 8.1% of the original DOF is re-
quired for reasonable accuracy. If this could be extrapolated to two di-
mensions, so that a 5 by 5 grid of nodes could accurately replace a 62
by 62 grid of nodes, then only 0.65% of the original DOF would be re-
quired. The savings in three dimensions, assuming the validity of extrap-
olation, would be even greater, requiring only 0.05% of the original DOE
Such extrapolations are probably highly optimistic, but they do at least
provide the incentive for exploring what DOF reductions are actually pos-
sible in the dynamic-response modeling of composites in two and three
dimensions.
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Concluding Remarks

As the next step, this methodology is currently being coupled to
two dimensional finite element discretization/modeling capability so as
to enable the exploration of the method's accuracy, as a function of mas-
ter node choice, in predicting two dimensional responses of composites.
As stated in [7], there are at least three implementation strategies avail-
able for the method: perform the reduction either 1) once globally (entire
model) with a large degree-of-freedom reduction, or 2) recursively and
globally with a small degree-of-freedom reduction per recursion, or 3) lo-
cally (as in substructuring) wherever it is needed most in the model. The
efforts of this paper, and the capability-upgrade to two dimensions men-
tioned above, fall under the first strategy. For large enough problems, in
terms of number of DOF, the latter two strategies will probably be more
practical. In fact, an implementation in terms of substructuring offers the
additional potential benefit of parallel computing; that is, the DOF reduc-
tion of each substructure could be performed in parallel. This provides
incentive to place the exploration of the method's accuracy as a sub-
structure-reduction method in one and two dimensions at higher priority
than moving directly on to global reduction in three dimensions, (as the
step following global reduction in two dimensions).
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ABSTRACT A Voronoi finite element model has been developed for anal-
ysis of heterogeneous media, in which second phase inclusions are arbitrarily
dispersed within a matrix. Finite element formulations have been developed
for thermo-elasticity, micropolar elasticity and elasto-plasticity.

INTRODUCTION

A number of analytical micromechanical models have evolved for heterogeneoLs
materials such as composites assuming small deformation linear elasticity the-
ory. These models predict effective constitutive response at the macroscopic
level from characteristics of microstructural behavior. Notable among them are
models based on : variational approach using extremum principles [1], proba-
bilistic approach [2], self-consistent schemes [3], and generalized self consistent
model [4]. Extensions of linear elastic models to the elastic-plastic domain
for small strains have been accomplished by the use of Mori-Tanaka mean-
stress theory in [5]. Though these analytical models are reasonably effective in
predicting equivalent material properties for relatively simple geometries, arbi-
trary distribution of shapes, sizes and location of the second phase are difficult
to deal with these models. Constitutive response of the constituent phases
are also somewhat restricted and predictions with large property mismatches
are not reliable. Also, these models are not capable of depicting evolution of
stresses and strains in the microstructure, thereby limiting their use to the
study of macroscopic behavior only. Consequently, Unit Cell models e.g. [6],
that generate material response through detailed discretization of a represen-
tative volume element of the composite microstructure, have been increasingly
implemented. Macroscopic periodicity conditions are generally assumed on the
Unit Cells. Most of these models also make assumptions on local periodicity,
thereby making the unit cells very simple. Despite their overall success, the
unit cell methods suffer from a few drawbacks. While periodic spatial distri-
bution is often useful to predict optimum properties, the fact remains that real
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Figure 1: (a) A representative material element (RME) and (b) A basic struc-
tural element (BSE)

microstructures are seldom periodic. Additionally, these models utilize con-
ventional mesh generators for finite element analysis. For arbitrary or random
microstructures, morphological incompatibility of the generated mesh with the
physical domain may arise with these generators and also tremendous efforts

are required to adequately represent the microstructure.

The present method is aimed at establishing a direct correlation between
techniques of quantitative metallography for arbitrary composite microstruc-
tures and their stress/ deformation analysis. Results can be used to establish
a scientific basis for determining the relationship between overall material re-
sponse and spatial distribution of location, size, shape, local volume fraction
and mechanical properties of constituent phases. The finite element model
developed, evolves naturally from a heterogeneous microstructure by Dirichlet
Tessellation of the domain. Tessellation methods have been used by Rich-
mond and coworkers in [7] in conjunction with quantitative characterization of

micrographs obtained by automatic image analysis systems. In this paper, a
tessellated two-dimensional microstructural domain is directly cast into finite
element analysis without any further discretization. Tessellation of a represen-
tative material element (RME) discretizes a heterogeneous domain into basic
structural elements (BSE) as shown in figure 1. BSE's are multi-sided con-
vex "Voronoi" polygons containing one second phase inclusion at most. Ghosh
and Mukhopadhyay [8] have innovated a finite element formulation for BSE's,
where Voronoi polygons act as composite elements in a FEM formulation. In
this paper, the above work has been extended to incorporate (a) non-polar and
micropolar thermoelasticity problems and (b) elasto-plasticity problems.

DIRICHLET TESSELLATION AND VORONOI ELEMENTS

Dirichlet tessellation is defined as the subdivision of a plane, determined by a
set of points. Each point has associated with it, a region of the plane that is
closest to it than to any other. Mathematically speaking, let PI (xI), P2(,x2),•••
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Pn(xn) be a set of n distinct random points in plane. Then the interior of the
Voronoi polygon associated with the i-th labeled point Pi is the region Di
defined as

Di={x:Ix-xi1<1x-xjI,Vj~ i} (1)

The aggregate of all such regions Di constitute the Dirichlet tessellation in
plane. Based on these principles, a two dimensional mesh generator to create
convex elements within for plane sections of multiphase materials, has been
developed by Ghosh and Mukhopadhyay [9]. Starting from information on
the boundary of the domain, locations, shapes and sizes of the inclusions, dis-
cretization takes place automatically by Dirichlet tessellation of a domain to
yield a network of convex "Voronoi polygons", containing one inclusion each,
at most.

VORONOI CELL FINITE ELEMENT FORMULATION

Different Voronoi cells in a tessellated domain can have different number of
sides. Application of the displacement finite element method is difficult be-
cause it is impossible to ensure interelement displacement compatibility. Ad-
ditionally, rank deficiencies in the stiffness matrix may result. To avoid these
difficulties and represent Voronoi cells as conforming elements, an assumed
stress hybrid method introduced by Pian [10], is invoked.

Elasticity
The complimentary energy functional for a Voronoi element is of the form

HE---- jf •, T[S]{ .}df + oe.n.ud9f2 + e i.udr (2)

10, 2 f Ja~e Ite(2

where {fo} is the equilibriated stress field in the element domain Q,, u is the
compatible displacement field on the element boundary aQ, with an outward
normal n, t is prescribed traction field on Ft., the element boundary that co-
incides with global traction boundary and Sijkl are components of the elastic
compliance tensor for linear elasticity. In the application of variational princi-
ples, the equilibrating stress field is expressed as a polynomial in the interior
of the element as :

{fo} = [P]{f3} in 9e (3)

where {f3} is a column of m undetermined stress coefficients /31, /2 ... 3, and
[P] is a m x m matrix containing functions of coordinates x,y corresponding
to the chosen polynomial. The prescribed boundary displacements {u} can be
interpolated from generalized displacement {q} at the nodes, in the form

{u} = [L]{q} in Ofle (4)
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where elements of the matrix [L] are functions of boundary coordinates. Sta-
tionarity of HE with respect to stress coefficients yields,

[H]{f3} = [G]{q} (5)

where [H] and[G] are detailed in [8]. Substitution of {1} in the expression for
complementary strain energy HE ( H6 El) for the entire domain and setting
the first variation 6 HE = 0 gives

[K]{q =[G]T [H]- 1 [G]{q}=f {t}T{u}dr= {f} (6)
rte

The stiffness matrix [K] will be rank deficient if it's rank is less than n-1 where
n is the number of degrees of freedom and I is the number of rigid body modes.
The necessary condition for [K] to have sufficient rank is m > n-i, where m
is the number of independent a-stress coefficients. The effectiveness of this
formulation has been elucidated by numerical examples in [8].

Thermo-Elasticity
When thermo-elasticity is included in the problem, the complimentary energy
density in equation (2) should be modified for IHTE as

B(o,6) -0{o}T[S]{u} + a0UH (7)
2

where 9 denotes the temperature field, a is the coefficient of thermal expansion
and UH denotes the trace of the stress tensor. Stationarity of IITE with respect
to {J3} yields :

[H]{3} =[G]{q} - fJ [P]Tao{I}Tdn = [G]{q} - {1} (8)

Substituing {/3} in HTE (Ze IITE) and setting the first variation to zero
yields

[G]T [H]-1 [G]{q} = {i} + [G] T [H]- 1 {f} (9)

It is seen that once the temperature field is known, equation ( 9) can be solved
for nodal displacements and element stresses.

A homogeneous thermo-elasticity example
A thick cylinder is analyzed under the conditions of plane strain thermo-

elasticity. It is subjected to an internal temperature of 9 inalt 300 C and
an external temperature of 0external- 500 C and an internal presure of 500 psi.
The internal and external radii of the pressure vessel are assumed to be 100
in and 200 in respectively. Material properties are Young's Modulus (E) = 3.x
107 psi, Poisson Ratio (v)=0.3 and coefficient of thermal expansion (a)=0.124
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Figure 2: (a) Voronoi mesh for the pressure vessel problem (b)Variation of
radial stress

x 10-4 0 c- 1. Figure 2(a) shows a Voronoi mesh for the problem. Figure 2(b)
shows a comparison of the variation of radial stress with the radial distance be-
tween the Voronoi cell finite element method and a conventional FEM analysis.

Micropolar Elasticity
Heterogeneous microstructures often develop differential polarity due to the
presence of second phase. This leads to micro-couples, and micropolar rep-
resentation is beneficial especially in regions of severe strain gradients. In
addition to the equations of linear momentum balance, Cosserat micropolar
theory introduces the balance of angular momentum, which, in the absence of
body couples and inertia effects is stated as :

div(lz) + e :or = 0 (10)

where p corresponds to couple stresses and e is the permutation symbol. The
infinitesimal strain tensor is assumed to consist of two independent compo-
nents, viz.,

S= grad(u) + e :w (11)

In equation (11), w represents micro-rotations at each material point. For
isotropic linear elasticty, the constitutive equations are given as

o- = (2/4 1Ym + 2 p, 1 skw + AI® I): c (12)

I = (1/j (13)
where 1, 1'4 and 1,k' denote identity tensors of second and fourth order
respectively, A and 1L are Lame constants, 1u is the Cosserat shear modulus,
1,, represents a characteristic length scale of the Cosserat continuum and V. is
the local curvature. Implementation of micropolar elasticity in the Voronoi
cell finite element formulation takes place in the same fashion as for non-polar
elasticity with the exception that the [P] matrix needs to be modified appro-
priately to account for couple stresses.
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Figure 3: (a) Voronoi mesh for the plate with a hole (b)Stress distribution

along the axis of symmetry

Example of a plate with a hole

A 8in x 8in square domain with a 1 in radius circular hole is subjected to
a uniform tension field of 10 psi. The material parameters are assumed to

be Young's Modulus (E) = 200 psi, Poisson Ratio (v)=0.3, Cosserat Shear

modulus (p,)= 100 psi and characteristic length l=l in. Exact solutions for
the stress distribution are available for both non-polar as well as micropolar
elasticity. Results of the Voronoi cell finite element analysis are compared with
the exact solutions in figure 3(b).

Elasto-Plasticity
Only small deformation elasto-plasticity, governed by J 2 flow theory with
isotropic hardening, has been considered in this paper. It is evident that the
elastic compliance matrix [S] in equation ( 2) should be changed to the elastic-

plastic tangent compliance matrix [SEP] to incorporate the effects of of state

and internal variables. A rate form of the constitutive relations for isotropic

hardening can be expressed as:

ip =C. -6, S 6-(14)
4 H&2  :

where 'P is the plastic strain rate, S is the fourth order elastic compliance

tensor, o' is the deviatoric Cauchy stress tensor, H is the plastic hardening

modulus and & is the current effective stress. In an incremental finite element

method, the increments of the strain tensor Ac for a given stress increment AZr
can be obtained by integrating equation (14) within a step. Variational and

hybrid methods for application to nonlinear problems have been extensively
studied by Atluri and Murakawa [11]. The complimentary energy functional

for an element in equation (3) is modified for the elastic-plastic case to yield

IIEP(o, U) -= _ (I ) : rdsi+ o -.n. ud&St-/j t"udl> (15)
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Figure 4: Hoop stress vs radial location for the pressure vessel elasto-plasticity

problem

where (-) =14(vu + vTu) in Q is not satisfied apriori. In an incremen-
tal formulation, stationarity is sought for the incremented complimentary en-
ergy functional HeP(o- + Ao-, u + Au)(= E, IEP("0 + Ao, u + Au) under the
assumptions of equilibriated stress field o- + Ao- in 9e and compatible dis-

placement fields u + Au on 09,. The increments of stresses and boundary

displacements are now expressed in the polynomial forms as for elasticity. The
stationarity condition with respect to Ao- at the end of an increment, yields

[P]T[ST]{SAo-}dQ j [l[p]T{n}{L}d,9f{q+ Aq} -

- j[P]T{A((Ao)}dQ = {fl} in Q, (16)

where {SAo-} can be interpreted correction to the stress increment tensor in

an iterative process. The first variation of the global complimentary energy

functional HWP(o. + Aor, u + Au) with respect to Aq, when set to zero yields
an equation, which should then be solved for nodal displacements.

A homogeneous elastic-plastic problem
The same thick cylinder as for thermo-elasticty problem (figure 2) is now solved
for elasto-plasticity. The cylinder is subjected to an internal presure that is
increased from zero to 18 dN/mm 2 . The internal and external radii of the
pressure vessel are assumed to be 100 mm and 200 mm respectively. Material

properties are Young's Modulus (E) = 21000 dN/mm2 , Poisson Ratio (v)=0.3,

Yield stress (ay)=24 dN/mm 2 and Plastic Modulus (H)=O. Results are com-
pared with Owen and Hinton [12]. Figure 4 plots the hoop stress as a function
of the radial distance at the final increment.

COMPOSITE VORONOI ELEMENTS WITH SECOND PHASE

A composite Voronoi element formulation for incorporating the effect of the
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second phase materials in the matrix is now developed. Two alternative ap-
proaches are discussed. The first is based on the introduction of a transfor-
mation strain in the regions of material discontinuity. The second approach is
a direct implementation of the heterogeneity through introduction of traction
continuity constraint at the interface.

Transformation Strain Method
Subject to a prescribed stress field or in a heterogeneous domain, the inclusion
occupying an domain 9, C QŽe (figure 1), exhibits an additional non-stress
causing eigenstrain e*, given by,

[S(x)] : {f} = [SO] {rr} + {+*} (17)

where [S(x)] is the location dependent elastic compliance of the inhomogeneous
composite material and [SO] is the elastic compliance of the homogeneous ma-
trix material. For the composite element, the element complimentary energy
functional in equation (2) is modified as

JIMc = - j B(o)dQ + f+ .n.udOQ + jn t.ud]F

- f 45*df +j E*.Z\S-.E* (18)

E* is defined only in the composite domain Q,. In addition to the approximating
functions for the stress and displacement variables defined earlier, the eigen
strain is interpolated as,

[R]{A}(19)

Setting the first variation of 11"1 to zero at the element level followed by the
variation of the global equation yields a global matrix equation, which is solved
for displacements and eigen-strains.

Direct implementation of interface constraint
Along a bonded composite interface aQ,, the stress and strain fields are dis-
continuous, while the displacement and traction fields are continuous. A dis-
continuous stress field is introduced into the modified complimentary energy.
'Traction continuity along the composite boundary is ensured by introducting
this constraint into the modified complimentary energy 11, through the use of
Lagrange multipliers. Consider a discontinuous stress field o and a displace-
ment field u' on 49Q, satisfying apriori, equilibrium conditions of o in Q, and

, - Q, but not necessarily in 0Q. The complimentary energy functional in
equation (2) is modified to accommodate the constraint as,

IIC2 =H-1 (om- o)n 3u'd4
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Figure 5: (a) ANSYS mesh and (b) Voronoi mesh for square domain with
inclusion

Figure 6: Stress variation along a section through the inclusion

o-m and or' designate stresses in the matrix and second phase respectively and
n is the unit normal on 09,~ out of the composite domain. Variation of fl1,
yields the aposteriori traction continuity condition,

(o- - o-) - n =0 on

The discontinuous stress field in an element is expressed as,

f{o-I} [P]{/3 + L(x)I3'} onf2, (21)

where L (x) =0 f or x C 9, - Q, and L (x) 1 for x C Q,. The displacement
field u' written as,

f{u'= [L] fq'I in 619, (22)

Composite Voronoi Cell analysis for Elasticity
A Im x Im square domain with a circular inclusion is subjected to uni-

form stretching of 0.05 m. The matrix material has properties (E,=69 GPa,
vm,=0.33) and the inclusion has properties (E,=133 GPa, v,=0.285). Calcula-
tions are performed for plane stress conditions. Results with the eigen-strain
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Figure 7: (a) Conventional Unit cell mesh and (b) Voronoi mesh for a square
diagonal packing RME

and direct constraint approaches in the composite Voronoi cell analysis are
compared with displacement based FEM results, generated by ANSYS Soft-
ware package. Figure 5 shows the ANSYS mesh and a tessellated Voronoi
cell mesh. Figure 6 shows the variation of longitudinal stress along a section
through the middle of the inclusion. The comparison convincingly demon-
strates the improved accuracy of the direct constraint method with respect to
the eigen strain method, especially within the second phase.

Numerical experiments with different distributions
In this example, effective properties and stress/strain distributions are com-

puted for a representative material element (RME) with different distributions
of the second phase. The volume fraction of the second phase is approximately
46%. The microstructures considered are : (i) a square edge packing composite
(ii) a square diagonal packing composite and (iii) random packing composite.
Two approaches are considered for verifying results. The first is the conven-
tional Unit cell approach where a part of the RME is modeled with periodicity
boundary conditions. Figure 7(a) show this mesh for square diagonal packing
composites. The second approach is the composite Voronoi cell analysis where
a RME is subjected to similar boundary conditions. Voronoi meshes for square
diagonal packing and random packing composites are shown in figures 7(b) and
8 respectively. Various numerical experiments involving uniaxial tension, sim-
ple shear and thermal expansion have been conducted with these models.The
material parameters for the matrix are (E,=69 GPa, v,,=0.3 3 , ay =43 MPa)
and for the inclusion are (E,=410 GPa, v,=0.2). The post-yield stress-strain
law for the matrix material is J 0.043 + 0.14C GPa. For elasticity
and thermo-elasticity problems, the effective values of material properties are
tabulated in table I. For small deformation elasto-plasticty, tension tests have
been conducted to determine the effective uniaxial stress-strain curves for the
heterogeneous materials shown in figures 7 and 8. Tests have been conducted
to upto .5 % strain and the results have been compared with unit cell models
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Figure 8: Voronoi mesh for a random packing RME

00- -_-------------..

0000 600 - .

00 000

00 000 00106 6 0 I- 000 00 4000 M

- --. (%) :o o-c

Figure 9: Effective elastic-plastic stress-strain curves for (a) square edge and
square diagonal packing composite and (b) random packing composite

on ANSYS. Figure 9 depicts the effective elastic/plastic stress-strain curves
for the square edge and square diagonal packing composite. It is generally seen
that predictions with the Voronoi cell analysis match well with ANSYS unit
cell predictions. For a random packing composite only Voronoi cell analysis
has been conducted. The effective stress-strain plots in the x- and y- directions
are depicted in figure 9(b). It is observed that there is some difference in the
curves for the x- and y- directions.
Table I: Thermo-Elastic Properties

I_ Square Edge Packing Square Diagonal Packing

Properties Voronoi Cell Unit Cell Voronoi Cell Unit Cell
Young's Modulus 135.58 GPa 129.1 GPa 116.97 GPa 118.35 GPa
Poisson Ratio 0.2929 0.2914 0.3211 0.3105
Shear Modulus 37.24 GPa 36.63 GPa 52.99 GPa 50.96 GPa
Coef. Ther. Expan. 16.06 16.26 15.02 15.85

CONCLUSION
A Voronoi cell finite element method is developed for two-dimensional heteroge-
neous materials with arbitrary microstructures for thermo-elasticity, microp-
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olar elasticity and small deformation elasto-plasticity. The direct constraint
method is observed to perform better than the tranformation strain method
in terms of accuracy. Overall the Voronoi cell FEM offers an excellent natural

basis for analysis of heterogeneous microstructures.
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On the Coupling of Pressure and Deviatoric
Stress in Hyperelastic Materials

Mike Scheidler
US Army Research Laboratory

Weapons Technology Directorate
Aberdeen Proving Ground, MD 21005-5066

1 Introduction

The Cauchy stress tensor T can be decomposed into a spherical part,1
-pI, and a deviatoric part, T*:

T = -pI + T*, ti = -p + t*ý.(1)

The pressure p is given by

p 3-(trT - +(t 2 + t3)2 -- t3 ), (1.2)

and the deviatoric stress tensor T* is given by

T =_= T - I(tr T)I, Vi = ti - lRtl + t2 + t3) ,(1.3)

so that tr T* = t* + t * + t= 0. The principal stresses ti and principal
deviatoric stresses t' are the principal values of T and T*, respectively.
For an isotropic elastic material the linear theory predicts that the pressure
depends only on the volumetric strain, whereas T*, which is a tensorial
measure of shear stress, depends only on the shear strain.

The object of this paper is to study those aspects of the nonlinear elastic
response of polycrystalline metals and ceramics which are relevant for high
velocity impacts, where large elastic increases in density are encountered.

'Second-order tensors are denoted by boldface uppercase Roman letters. The identity
tensor is denoted by I, and tr denotes the trace function. The deviatoric part and the
transpose of any tensor A are denoted by A* and AT, respectively. The norm of A is
JhAil- tr (A T A).
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As is well-known, a nonlinear pressure/density relation is generally required
for such applications. Here we focus on other nonlinear effects which are
often ignored or treated incorrectly. In particular, we study the coupling
of the pressure and deviatoric stress which results from the dependence of
shear stress on volumetric strain and the dependence of pressure on shear
strain.

We begin with a brief review of relevant results from the theory of hy-
perelastic materials. 2 Let F denote the deformation gradient relative to
some fixed reference configiration. An elastic (or Cauchy-elastic) material
is one for which T is a function of F only. A hyperelastic (or Green-elastic)
material is an elastic material for which the first Piola-Kirchhoff stress ten-
sor (det F)T(F-1)T is the gradient of some real valued function 6 of F, in
which case E is called the strain energy or the stored energy per unit refer-
ence volume. 3 We consider only hyperelastic materials here. For simplicity
we also assume the material is isotropic. This condition, together with
the requirement that constitutive equations be properly invariant under
changes of frame, yields various reduced forms (see below) for the strain
energy and the Cauchy stress tensor.

The left stretch tensor V is the unique symmetric positive-definite ten-
sor occurring in the left polar decomposition of the deformation gradient:

F = VR, V 2 = B = FF T , (1.4)

where R, the rotation tensor, is proper orthogonal, and B, the left Cauchy-
Green tensor, is symmetric positive-definite. The tensors V and B share
a common set of principal axes, called the principal axes of strain in the
deformed state or the Eulerian strain axes. The principal stretches Ai
(i = 1, 2, 3) are the principal values of V, the principal strains are Ai - 1,
and the principal values of B are bi = A?. Let J denote the Jacobian of
the deformation, and let # denote the ratio of the densities p and Po in the
deformed and reference configurations, respectively:

J-detF=detV=A1 A2A3  and #=pp/po=1/J. (1.5)

Then relative to an undistorted reference configuration of an isotropic hy-
perelastic material, e and T may be expressed as isotropic functions of

2A standard reference is Truesdell and Noll[1].
3This restriction on the constitutive equation is motivated by the restrictions imposed

on thermoelastic materials by the second law of thermodynamics. A thermoelastic ma-
terial reduces to a hyperelastic material for isentropic deformations, provided we take
- to be the internal energy per unit reference volume. The same thermoelastic mate-
rial reduces to a (generally different) hyperelastic material for isothermal deformations,
provided take e to be the free energy per unit reference volume.
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V or B; e may also be expressed as a symmetric function of A1, A2 , A3 or
bl, b2, b3; the Eulerian strain axes are principal axes for T; and 4

0e - e B866 0e
T=p 2vi= 2p t, = fi, = = 2pb b (1.6)

aAi ai

Note that the summation convention is not used here or elsewhere.

2 The Logarithmic Strain Tensor

The principal logarithmic strains li are the logarithms of the principal
stretches, and the (Eulerian) logarithmic strain tensor L is the tensor
coaxial with V and B but with corresponding principal values equal to
the principal logarithmic strains:

li=In Ai=1-nb, L=lnV=alnB. (2.1)

Then the strain energy function - of an an isotropic hyperelastic material
can be expressed as an isotropic function of L or, equivalently, as a sym-
metric function of the principal logarithmic strains. From (1.6)3 and (2.1),
it follows that

t,=p - T= L (2.2)

The logarithmic strain tensor has several interesting properties. By
(1.5) we have

trL = 11 + 12 + 13 = ln(A1 A2A3 ) = lnJ -ln/. (2.3)

Hence tr L is a measure of the volumetric strain. The deviatoric part L*
of L has principal values

I l __ 1(1 2 + 13) =li - 1 in J

In A 1 in +In( , (2.4)

"If e is a scalar-valued function of a symmetric tensor A then the gradient of 6 at A
is the symmetric tensor 0e/,9A with the property tr [(Oe/OA)S] = d/dt e(A + tS)lt=o,
where S is any tensor such that A + tS lies in the domain of e for sufficiently small t.
Furthermore, e is an isotropic function of the symmetric tensor A iff - is a symmetric
function of the principal values ai of A, in which case &-/,A is coaxial with A and has
corresponding principal values OE/Oai.
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where i,j, k always denotes a permutation of 1, 2, 3. Now consider another
deformation which differs from the given one by a superimposed dilatation
and rotation, so that this second deformation has left stretch tensor aV
and principal stretches aA1 , aA2, aA3 for some a > 0. Then L* is the same
for both deformations, since the factor a cancels out in (2.4)4. Hence the
deviatoric logarithmic strain tensor L* is independent of the dilatational
part of the deformation gradient, i.e., it is independent of the volumetric
stretch or strain as measured by (1.5) or (2.3). Therefore L* is a tensorial
measure of shear strain only.

From the results above it follows that e, T, T*, and p may be regarded
as a function of the independent variables L* and J (or fi), with each
function isotropic in L* for fixed J (or fi). Then it can be shown that
(2.2)2 is equivalent to the conditions5

p=- I and JT*= (2.5)
T L* JOL*(

where a subscript denotes the variable held constant during differentiation.
Equivalently,

p= p2 OE and T* = (i ). (2.6)
apL* a*P

In terms of the pressure response functions p = P(J, L*) = p(,i, L*), equa-
tions (2.5)1 and (2.6)1 may be integrated to yield

= 3(•, L*) dý + ý(L*) = L*)ý- 2 dý + e(L*) (2.7)

for some isotropic function g of L* only. From (2.7) we see that the pressure
response function of an isotropic hyperelastic material determines the strain
energy function to within an arbitrary function of L* only. Also note that
for an isotropic elastic material, the existence of a strain energy function
places no restrictions on the pressure response function. That is, given
any isotropic function P of J and L*, there exist infinitely many strain
energy functions, namely those given by (2.7)1, for which the corresponding

5To prove (2.5)1, for example, note that since l* is independent of J, (2.4) yields

ali/tJ = 1/3J. Then
__ = Oe Ol, 1 O- 0

1J 01i OJ 3V TI

But from (1.2), (2.2), and 1/J, we see that the expression on the right above is
equal to -p.
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pressure response function is p = 13(J, L*); then the response function for
the deviatoric stress tensor is determined from (2.5)2.

In practice we are usually faced with a somewhat different situation, i.e.,
we have a limited amount of experimental data on the response functions
for both the pressure and the deviatoric stress, and we need to determine
any additional restrictions imposed on these response functions due to the
existence of a strain energy function. We will address this problem in the
next section for small shear strains. The following result, which requires no
restrictions on the magnitude of the shear strain, is an immediate conse-
quence of (2.5) or (2.6). For an isotropic hyperelastic material the following
conditions are equivalent:
(i) The strain energy decouples additively into a function of density only

and a function of shear strain only, i.e., - = E(P) + g(L*);
(ii) The pressure depends only on the density, i.e., p = p(p)
(iii) JT* is independent of the density;
If these conditions hold then p(p) = p2d&/d and T* = fag/OL*. In par-
ticular, either (i) or (ii) implies T* is proportional to the density ratio p.
As we will see in Section §4, these properties are generally inconsistent
with experimental data.

In the remainder of this section we consider some relations involving
the invariants of L*. These results will be utilized in the next section. Let
7" and 6* denote the second and third moments of L*:

E tr [(L*) 2] = HIL*1l• = (11*) 2 + (l2*)2 + (3"*)2
-2(l1*12* + 1*1 * + l*li*) = 2[(l/*)2 + l'lj + (lI*) 2]

= [(l1 * - l1*)2 + (* -* -_I*)2 + (I3* - 1 *)2 ](2.8)
and

tr [(L*) 3 ] (11 *)3 + (12*) 3 + (13*)3

S3 det L* = 3 1*l*l12* - E (Im*) 2 1n* (2.9)

where we have used the fact that mon

tr L* = l1* + 12" + la* = 0. (2.10)

Both 7* and 6" are isotropic scalar measures of shear strain which are
independent of the dilatational part of the deformation. 6 Note that 7* > 0
and that v-@- = IIL*l! is the norm of L*, which may be interpreted as the
equivalent shear strain; it is zero iff the deformation gradient is a dilatation
superimposed on a rotation:

- = 0 # I!L*ll=O 0 L* =0 <:> V= J 1/ 3 I <: F= j1/ 3R. (2.11)

6 Alternate expressions for 7* follow from (2.8)6 and li* - lj* = i - lj = ln(Ai/Aj).
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Of course, 7* 0 =o 6* = 0, but the converse does not hold. 7 Let L**
denote the deviatoric part of the square of the deviatoric part of L:

L** [(L*)2]* = (L*)2 
- y*I. (2.12)

Then the principal values l** of L** are given by

1** = (IT - y = l[(l*l 2 + 21 *l k*] = 1 1±* + " (2.13)

From (2.3), (2.4)1, (2.8)-(2.10), and (2.13), we find that8

OP 0Y* 06*
Oli = P, = 21: lf, 31r. (2.14)

As observed above, any function of L can be regarded as a function
of # and L*. Therefore any scalar-valued isotropic function of L can be
expressed as a function of p and the second and third moments of L*. In
particular, this applies to the strain energy E and the pressure p:

E (p, -*,6*) and p = p(p,",6*) () = )p,2 (2.15)

where (2.6), has been used. Then from (1.1), (2.2)1, (2.15)3, and (2.14),
we obtain the following formula for the principal deviatoric stresses in an
isotropic hyperelastic material:

tý = 2P as 3 (3)P:** ; (2.16)

equivalently,

T* = 2p (V),* + 3P (EL** . (2.17)

Note that the coefficients of L* and L** in (2.17) generally depend on all
three of the strain variables p, 7*, and 6*.

7 If the principal stretches are ordered so that A1 _< A2 _< A3 , then

6*1=0 = 120 * "= -- 13" = 12 = l ,(1 + 13) .* A2 V/AIA-

In particular, 6* = 0 for a simple shear (where A, = l/A3 and A2 = 1) and also for a
simple shear with superimposed dilatation (where A1 = J 2/ 3 /A3 and A2 = j1/3).

8 in deriving (2.14)2,3 it is useful to first establish the following results: Ol1I"/Ol -

Oh*l0s= -1, Oh*la/h = 2 •andaUl*/8l1 = 2 1
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3 Approximate Formulas

In this section we consider approximate formulas for the strain energy,

pressure and deviatoric stress which are valid for sufficiently small shear
strains and arbitrarily large changes in density. From (2.15)1, (2.8), and
(2.9), it follows that

6 = P() +62(P)-Y*+ Op(IL*I113)

= g(P) + 2 (p)-Y* +&3(P)45 +Op(IIL*II 4) (3.1)

for some functions e, 62, and 6 3 of p only. Here O (IIL*II") denotes a
function of p and L* which is of order n in L*, i.e., there is a function
M(p) such that O,(IIL*IIn) < M(p) IIL*IIn for L* sufficiently close to 0.
Similarly, from (2.15)2 we have

p = p(p) + o((IIL*II 2)
= P(p) +p2 (P)-Y* + Ou(IIL*1)

P i(P)+p 2 (P)Y*+p 3(P) b* 0O (IIL*II4) (3.2)

for some functions p, P2, and P3 of p only. Since -y' and b* are independent
of p, (2.15)3 and (3.1) imply

p(p) = p2dE P2(P) = p(2 d2 p) 2 d3 (3.3)

We call p = p(p) the hydrostatic pressure at the density ratio P. It is
the pressure the material would experience if the shear strain were zero,
i.e., if the conditions in (2.11) hold, in which case (1.1) and (2.17) require
that T = -pI = -pI. In accordance with experimental data we assume
dp/dfi > 0. Then the bulk modulus K is positive:

df) dp dp3
0 < P =- =P -- = p p JJ(3.4)

Also, p may be regarded as a function of the hydrostatic pressure p. Hence
any function of fi, such as , and the functions it and w below, may also be
regarded as a function of p.

From (2.16) and (3.1), the principal deviatoric stresses satisfy

t,?* = 2y(f) l, + Of (IIL*112)
= 2/•(pi)l* + 3w(p) l* + 0O(IIL*IP) (3.5)
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where p(p), the shear modulus at density ratio p, is given by

an ( ) P 6.2(Pi) aP y ,Y 6= (3.6)

and

UX067 *(3.7)
yz=6 =0

The relations (3.5) are equivalent to

T* 2/1(fi)L* + Op(IIL*Ij 2)
= 2/I(p)L* + 3w(p)L** +Op(HIL*IH 3 ). (3.8)

The constitutive relations (3.2) for the pressure and (3.5) or (3.8) for
the deviatoric stress, clearly demonstrate the dependence of pressure on
shear strain and the dependence of deviatoric stress on volumetric strain.
Furthermore, these dependencies are coupled. Indeed, from (3.3)2,3, (3.6),
and (3.7)1, it follows that the coefficients p 2(p) and P3 (P) in the expansion
(3.2) for the pressure are related to jt and w by

P (p) p 2 d =p - , p P p p (3.9)
23z = P - , (L (.0

This coupling of the pressure and deviatoric stress may be made more
explicit as follows. First, note that from (2.8) and either (3.8) or (3.5), we
have

IIT* 12 = (t1*)2 + (t2*)2 + (t3*)2 = [2 ll(p)]2 7y* + O (IIL* 13). (3.11)

Then on solving (3.11) for -y* and substituting into (3.2)2, we obtain the
following relation between the pressure p, the hydrostatic pressure p - p(p),
the shear modulus p, and the equivalent shear stress liT* II:

P = P(P) + -2 P p- IIT* 1 12 + Op(IIT*13 )

= P+ I( 1) HT* 12 ± op(IIT* 113), (3.12)

where in (3.12)1 the coefficient of IIT* 112 is regarded as a function of fi, and
in (3.12)2 it is regarded as a function of 3.
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The above results may be expressed in terms of the deviatoric parts
E*, G*, and H* of the (Eulerian) finite strain tensors

EV -I G-= (B -I), H - (3.13)

in particular, H is known as the Almansi-Hamel strain tensor. Some care
must be taken here since, unlike L*, the tensors E*, G*, and H* are not
independent of the volumetric strain. Analogous to the definition (2.12) of
L**, for any tensor A let A** - [(A*)2]* = (A*) 2 - ½tr [(A*)2]I. Then it
can be shown that

L* pl/3 E* - ,'p2/ 3 E** " 3 - 4/3G** p- 2/3 l + p- 4 / 3 H* (3.14)

L** - # 2/ 3 E** #4/3 4 / 3H** (3.15)

p2/31IE*IIj 2 - #4/311G*11 2  p-4/3IIH*112, (3.16)

where the error in each of these approximations is of order IL* II3. Substitu-
tion of (3.14)-(3.16) into (3.1)1, (3.2)2, and (3.8)2 yields alternate formulas
for 6, p, and T* to within an error of order IlL* 113. Also note that if the
E**, G**, and H** terms are omitted in (3.14), then the error in (3.14) is
of order IL* 12, and (3.8), and (3.2), yield

T* 2p(p)L* Pz 2p1/3jL(p•)E* P: 2p2/3yL(p)G* ;z 2p-2/3yj(#)H* (3.17)

and p p(p), all to within an error of order IIL* 112. Thus when terms of
second order in the shear strain are neglected, the pressure depends only on
the density whereas the deviatoric stress depends on both the shear strain
and the density through the density dependence of the shear modulus.9

As we will see in the next section, for many materials the shear modulus
changes substantially over the range of densities encounterd in high velocity
impacts.

4 Material Properties

Let UL and Us denote the longitudinal and shear wave speeds in an isotropic
hyperelastic material in a state of dilatational strain (cf. (2.11)) under

9The reader who prefers to work with the strain tensor G, for example, may be
tempted to use the term "shear modulus" for the coefficient p2/3 U(p) of 2G in (3.17).
However, as we will see in the next section this would be in conflict with the terminology
used in much of the wave propagation literature.
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hydrostatic stress T = -f) I. These wave speeds are related by the well-
known formula (cf. [1, (75.4)1) U2 = I + UB, where UB d2i/dp is
referred to as the bulk wave speed. Then from (3.4) we have , = p UB.
Similarly, it is customary to define the shear modulus it by p p Us2.
Then 13p = pU2 - jdfi/dp, and by use of the well-known formula (cf.
[1, (74.7)]) p UL2 = t/al, it can be verified that the shear modulus as
defined here agrees with the definition used in the previous section. The
shear and bulk moduli as a function of density or hydrostatic pressure are
usually obtained from measurements of ultrasonic longitudinal and shear
wave speeds, together with the above relations. From p = p Us2, (3.9), and
(3.4), we see that the coefficient P2 of _'* in the expansion (3.2) for p is also
given by

_dU5

P2 = 2 prUs -. • (4.1)
dp

Then from (3.9) and (4.1) it follows that

dp dt dUsp2>O• • >/z•=•d'p>t¢ =• >0.(4.2)

In particular, dUs/dji > 0 implies dpl/dp > 0. Also, since y* > 0 for
any nonzero shear strain, from (4.2) and (3.2)2 we see that shear strain at
constant density results in an increase in pressure, whereas shear strain at
zero pressure results in bulking (since p(/5) < 0 in this case), provided that
terms of order three in the shear strain can be neglected and dUs/dji >
0. For most isotropic elastic materials the shear wave speed does in fact
increase with pressure.10

The elastic moduli and their pressure derivatives evaluated at t = 0
(equivalently, #i = 1) will be denoted with a zero subscript. Values for
a few materials are listed in Table 1 on the next page." Table 1 shows
that polycrystalline zinc oxide and fused silica are anomalous in that their
shear modulus decreases with increasing pressure. For these materials the
inequalities in (4.2) are reversed, and (3.2) implies shear induced com-
paction (for sufficiently small shear strains) at zero pressure. This is indeed

"°This statement requires some qualification in the adiabatic case, since the shear
modulus and the shear wave speed should increase with pressure to some peak values
and then decay to zero as the material melts. Also note that (4.2) remains valid if all
inequalities are replaced by equality, in which case we have p = poLp; thus for the typical
case where dUs/dp > 0, the shear modulus cannot be proportional to the density.

"lThe data for Al, Cu, U, and W are taken from [2], TiB2 from [3], ZnO from [4],
and fused silica from [5].
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a well-known phenomenon in fused silica. Observe that

d±#i+ 2 )ad - 1 dii

P+0(P2) and P -o_ I p +O(p2). (4.3)d=#o 0P oo po dp o

Thus (d 1 /dp)o/01 o measures the relative change in the shear modulus due
to hydrostatic pressure.

d d_ 1 dp dp 1o
Material Ko 0 1o d 1tod0  d70  ,o

Al 76.0 26.1 4.4 1.8 0.069 1.5
Cu 137 47.7 5.5 1.4 0.028 1.0
U 113 84.4 5.9 3.0 0.036 2.3
W 310 160 3.9 2.3 0.014 1.8

TiB 2  237 246 2.0 9.0 0.036 7.9
ZnO 139 44.2 4.8 -0.69 -0.016 -1.0

Fused SiO 2 36.7 31.3 -6.3 -3.2 -0.10 -4.1

Table 1: Elastic Moduli and Their Pressure Derivatives (n0 and Io in GPa,
(dp/dfi) o/po in GPa-1, other quantities dimensionless).

Expansion of the hydrostatic pressure p in powers of p yields
°(dr, -1) (p -1)2 + 0((pi-1)3). (4.4)

!3(#=n0#-1+-2 •-10

Now consider the case where IIL*II = 0(p - 1), i.e., where the shear strain
and the volumetric strain are of the same order. Then

1*= a (p - 1)2 + O((p - 1)3) (4.5)

for some constant a which depends on the particular deformation in ques-
tion, and from (3.2)2 and (4.4) we have

P --- a (-io _o (p-1)±+ ((p-1)2), (4.6)
P df 0  KOl

P -- + ý1)+ -1 +a - (P -1)2

KO 2 0  / dp 0  KO

+ 0((p - 1)3). (4.7)
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Equation (4.6) gives an estimate for the relative increase in the pressure
due to shear strain. Equation (4.7) is useful for comparing the second-
order contributions to the total pressure: the first group of terms inside the

square brackets is the contribution due volumetric strain; the second group

is the contribution due to shear strain. These results apply in particular to

uniaxial strain where A2 - A3 = 1, in which case y" 2 (ln p) 2 and a = 2/3

in (4.5)-(4.7). We will apply the above results to uniaxial strain of the

polycrystalline titanium diboride tested in [3]. From the data in Table
1 we find that the contributions of volumetric strain and shear strain to
the second-order term in the expansion (4..7) for the total pressure are

0.5 and 5.27, respectively, i.e., the shear strain contribution is an order of
magnitude greater than that of the volumetric strain. And from (4.6) we

have (p - f)/p -_ 5.27 (p - 1). Of course, these results are valid only within

the elastic range of this material. At the Hugoniot elastic limit (HEL),
p - 1 is approximately equal to 0.03 (cf. [6]), so that (p - p)/p _ 0.16.

In other words, at the HEL the relative increase in pressure due to shear

strain is about 16%. If not taken into account this increase would lead to

an overestimation of the shear stress at the HEL (obtained by subtracting
p from the longitudinal stress).
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Dominant inelastic deformation processes of metal polycrystals at large
strain include the nucleation and evolution of dislocation substructures,
deformation twinning, phase transformations, and the evolution of
crystallographic texture. Due to its technological importance, crystallographic
texture has been the focus of much of the current research in large strain (cf.
[1-5]). Strain-hardening theories which incorporate deformation substructure,
such as the mesh length theory of Kuhlmann-Wilsdorf [6,7], have been largely
ignored in large strain deformation model development, however. Accounting
for strain-hardening processes either directly in the case of micro-scale models
or indirectly in the case of macro-scale models is necessary for a more
complete theory.

The mesh length theory proposes that clusters of stress-screened
dislocation arrays, which are lower energy structures than uniform or
statistically predictable distributions, will prevail [8]. These clusters are low
energy dislocation structures (LEDS). This means that there will be areas of
sparse dislocation population interspersed with densely packed dislocation
arrays. The most common example of an LEDS is the dislocation cell which
forms in materials with higher stacking fault energies (SFE). The cell is the
dominant LEDS in these materials during the linear, stage II strain hardening
regime. The evolution of certain cell walls into geometrically necessary
boundaries (GNBs) in the form of dense dislocation walls (DDWs) and
microbands (MBs) signals the onset of the non-linear stage III strain-hardening
regime. These GNBs divide the grain into regions of cells of common slip
called cell blocks (CBs). The cell block becomes the dominant LEDS during
the large strain stage IV regime and its refinement defines the strain-hardening
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character. The GNBs are often macroscopically oriented near the plane of
maximum shear stress [9]. This being the case, one can envisage more
possible orientations for GNBs in compression or tension as compared to
torsion due to the conceptually infinite number of maximum shear stress
planes which exist in pure compression or tension. In materials of lower SFE
or of higher frictional stress, cross-slip becomes more difficult and the
dominant LEDS during stage II becomes the Taylor lattice typified by
alternating rows of edge dislocations differing by sign along the primary slip
plane. Much less is known about the details of the strain hardening processes
in these materials, but it has generally been observed that GNBs form and the
grain is again segmented into subgrains in a manner similar to cell forming
materials [10].

Plastic deformation is a continuous process consisting of different modes
of deformation. Deformation by twinning can occur simultaneously and
subsequently to slip [11] in many materials of low stacking fault energy and
can alter the basic substructure observed within these materials. This
complicated scenario can be augmented by phase transformations such as the
strain-induced -,--'a' martensite transformation which occurs during plastic
deformation in austenitic stainless steels [12-14]. The strain-induced a'
martensite uses intersections of stacking faults and/or twinning planes which
result from slip and twinning processes, respectively, as nucleation sites. The
dislocation substructure which forms in these materials at lower strains,
therefore, can have a strong effects on the density of a' martensite nucleation
sites.

Metals at large strains develop a preferred orientation or crystallographic
texture in which certain crystallographic planes tend to orient themselves in
a preferred manner in response to the applied loads or displacements. The
bulk material response is a result of both texture evolution and strain-
hardening processes as well as the complex interactions which naturally arise
between them. Very fundamental questions regarding the effect of dislocation
microstructure on texture development as well as the relative importance of
both to the bulk material response remain largely unanswered [15].

The development of deformation-induced anisotropy during large strain
deformation has long been attributed to the evolution of texture and its
importance has been demonstrated in many experiments [16-18].
Comparisons between experimental observations and theoretical predictions
show, however, that texture can only account for part of the observed
deformation-induced anisotropy. For example, if deformation-induced
anisotropy results only from the formation of texture during a rolling process,
then its effect on the subsequent yield stress of specimens taken at various
orientations with respect to the rolling direction could be accounted for by the
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modification of the stress level by the Taylor factor, M. The M factor is the
ratio of the sum of the crystallographic shear strains to the macroscopic axial
strain in uniaxial tension using Taylor's assumption of generalized minimum
work [19,20]. It has been observed, however, that this modification can only
account for part of the flow stress discrepancies. In recent work by Hansen
and Jensen [21], the observed orientation and spacing of GNBs in the form
of DDWs and MBs were taken into account to accurately predict the flow
stress distribution as a function of angle from the rolling axis for tensile tests
conducted on cold-rolled aluminum. These GNBs are structures of immobile
dislocations which provide directional resistance to motion of mobile
dislocations. They altered the Petch-Hall relationship for the grain size
contribution to flow stress according to

o'GM, = Kh 'G
%NB GNb(1

where DGN is the distance between geometrically necessary boundaries.
Crystallographic slip is assumed to take place on planes which form an angle
of 450 with respect to the tensile axis. For a given orientation, the normals
to all of these planes will form a cone with its altitude direction along the
tensile axis and with a half-cone angle of 45'. This model is referred to as
the conical slip model. These results are very significant. As proposed by
Teodosiu [15], these results confirm that the bulk deformation behavior of a
material is dependent on both the development of crystallographic texture and
the development and evolution of dislocation substructure. The results also
confirm that the stress-state dependent macroscopic orientation of the large
strain GNBs plays a strong role in their evolution as well as affecting
continued slip processes and strain-hardening.

Due to inherent instabilities in tension, finite strain experiments have
been largely confined to uniaxial [22] and biaxial [23] compression as well
torsion (cf. [2,22]) tests. Traditionally, torsion tests comprise the majority
of experiments due to frictional complexities which arise at the test machine -
specimen interface during a compression test. Torsion tests have been

conducted on both solid circular bars [2] and very short thin-walled tubes (cf.
[22]). An assessment of path history dependence can be made by conducting
tests involving sequences of compression (or tension) and torsion. Due to
experimental complexities, however, few experiments of this type have been
reported (cf. [22]).

One of the most consistently observed experimental phenomena is the
softening behavior of torsion relative to compression. This effect has been
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attributed to differences in crystallographic textures and, to a lesser extent,
heightened strain-hardening in compression over torsion due to more slip
activity in compression [24]. In light of the earlier discussion concerning the
profusion of dislocation substructures in compression, the latter explanation
seems more plausible, especially within the moderate strain regime. During
free-end torsion, an axial strain develops as a manifestation of the evolution
of deformation-induced anisotropy. During fixed-end tests an axial stress is
induced. Monitoring and correlation of such "secondary" effects is an
important aspect of the performance of large strain theories [25,26].

Experimental Program
Motivated by the above observations, large strain experiments involving

pure torsion, pure compression, and sequences between compression / torsion
and torsion / tension were conducted on type 304 stainless steel (SS 304L).
The equivalent stress versus equivalent plastic strain response is depicted in
Fig. la with u = (3J 2)' and F = v'2/3 1 IDPdt 11. The second invariant of
deviatoric stress, J2, is defined by J2 = 1/2tr s2 and DP is the plastic rate of
deformation tensor.

1400 IOn

SSD. SS 304L

-11

a 0.0004 Bieeý S34
Axial Extension

100
0. .00 -.i_ , - 0 .T_- Te.. *o peso oso

2D

(a) EP (b) "f
Fig. (1) -Experimental results for ompression, free-end torsion, compression
followed by free-end torsion followed by tension tests

conducted on SS 304L: (a) the equivalent stress-strain response for all tests
and (b) the axial strain response during the free-end torsion test and the
torsional component of the compression/torsion test.

The expected torsional softening can be observed in Fig. Ia. In
addition, the compressively prestrained material appears to yield between the
pure torsion and pure compression curves and subsequently hardens in a
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manner similar to torsion; the torsionally prestrained material appears to yield
near the pure torsion stress level, then hardens towards the pure compression
curve. In Figure lb, the induced axial strain as a function of shear strain is
plotted for both the pure torsion test and for the torsion episode of the
compression/torsion sequence test. The induced axial strain appears to be
independent of compressive prestrain; since the sequence test involves a much
higher shear stress level, its relation to non-linear elastic effects (cf. [27]) is
doubtful.

The strain induced 3y -" a' martensite transformation which occurs in SS
304L has a significant impact on its strain-hardening character [14]. To
investigate the occurrence of the a' transformation and to characterize the
overall deformation substructure of this material, a transmission electron
microscopy (TEM) study as well as magnetization measurements were
conducted. Figure 2 is a bright field TEM micrograph which shows
representative deformation substructure at &' = 50% compression. The plane
of the page is normal to a radius of the cylindrical specimen. The
compression axis is noted by the arrow on the figure. The light-colored
features trending horizontally are a' martensite as determined by the
diffraction pattern of this area. Twinning planes run roughly from the lower
right corner of the figure to the upper left. Some of the planar features
become so fine that distinguishing between twins, stacking faults and E

martensite (hcp) is not possible. Consistent with the terminology of Murr et
al. [13], these areas are simply referred to as faulted regions. The f
martensite, twinning planes, and stacking fault intersections serve as
nucleation sites for the a' martensite. These a' embryos grow and eventually
coalescence, resulting in the polyhedral-shaped a' evident in Figure 2.

While the martensite transformation is extremely important, dislocation
substructures are also evident. Figure 3a is from an JO = 100% torsion
experiment. Twinning planes are apparent in this figure, but superimposed
on the twin structure is a Taylor lattice. The positions of these features are
shown schematically in Figure 3b. Dislocation cells and dense dislocation
walls were also seen in other micrographs. One can conclude that the
deformation substructure of this material is indeed extremely complicated.

The volume fraction of a' determined from the magnetization
measurements for various loading histories is shown in Table 1. Upon
examination of Figure la, it can be seen that the fraction of a' is related
to the stress level as well as the accumulated plastic strain. Since there is a
slight volume increase during the transformation, a positive hydrostatic stress
aids the process and more oa' is produced during tension than compression
[14]. The increased a' production in compression compared to torsion,
however, likely results from a heightened density of nucleation sites
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Fig (2) - TEM micrograph of SS 304L deformed to e' 50 % in compression.
The compression axis is depicted by an arrow.

S1.0 PM

~T(a)

(b)

Fig. (3) - (a) TEM micrograph of SS 304L deformed in torsion to - 100%.
The torsional axis is depicted with an arrow. (b) Schematic depicting the
position of the twins and the Taylor lattice (TL) shown in (a).
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(intersections of twinning planes, E martensite, and stacking faults) due to the
higher number of planes of maximum shear stress in compression compared

to torsion. One can conclude, therefore, that both the evolution of
deformation substructures and the production of a' contribute to the strain-
hardening character of SS 304L, and that these processes can be highly
coupled.

Table 1. Volume fractions of a' determined from magnetization
measurements

Deformation History Volume Fraction
, M'(%)

Torsion, -= 50% 2.8

Compression, EP = 50% 5.1

Torsion, - = 100% 10.0

Compression -P = 50% / 12.4
Torsion J = 50%

Deformation models for large strain
Large strain models are generally micro-scale (formulated on the size

scale of a slip system/grain) or macro-scale (formulated on the size scale of
the test specimen or structural member) in nature. Micro-scale models are
also referred to a crystal plasticity or micromechanical models and are based
on the pioneering work of Taylor [19]. The philosophy of micro-scale
polycrystal models is to formulate the problem at the slip system level and
then to use the geometry of the crystal class to construct a grain. Then the
polycrystalline solid is constructed by assembling an ensemble of grains using
an appropriate constraints (cf. [28]), a self-consistent method (cf. [29]), or by
assigning each grain as a finite element [30-32]. One of the inherent strengths
of these models is their ability to track the development of crystallographic
texture. In an earlier subsection, the development of macro-oriented
geometrically necessary boundaries like dense dislocation walls and
microbands was presented. Evidence was presented which substantiated the
claim that the development and evolution of these structures can have an
influence on the overall aggregate deformation on the same order as the
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development of crystallographic texture. Microscale models have no explicit
manner for dealing with such deformation substructure. While the structure
of the crystal lattice which is explicitly present in crystal plasticity
formulations allows for direct monitoring of the motion of the lattice itself,
accountance for the nucleation and evolution of dislocation substructures has
not yet been made. Crystal plasticity formulations assume deformation by
crystallographic slip, and the focus of these formulations is the slip plane.
Specific details of dislocation generation, motion and interaction do not appear
explicitly. Hence, dislocation substructure must be accounted for in a
phenomenological manner, i.e. through expressions for the instantaneous
hardening modulus for each slip system. Hardening which results from phase
transformations may be treated in analogous fashion. The introduction of
realistic constraints on dislocation interaction and hardening processes within
the crystal to reflect formation of LEDS is presently beyond the scope of
crystal plasticity theory.

As the name implies, macro-scale formulations involve constitutive
assumptions on the scale of a representative volume element consisting of an
ensemble of grains. Such models typically assume material homogeneity but
can include elastic and plastic anisotropy. In reality, the philosophy of
macro-scale models is really quite similar to that of micro-scale models
except, as was shown in the previous section, micro-scale models make the
"phenomenological" constitutive assumption at the slip system level whereas
similar assumptions are manifested in the macro-scale models through
evolution equations of internal variables such as the kinematic hardening
variable, ct, and the isotropic hardening variable, R. The macro-scale model
framework has the flexibility to reflect physical processes on all size scales
of the material. In theory, the inclusion of the effects of processes such as
the evolution of dislocation substructure, phase transformations, etc. is
possible. This flexibility also presents a great challenge since such effects
must be included implicitly through the evolution equations of the internal
variables, as well as within the structure of other elements of the theory such
as the flow potential.

Proposed Model Framework
A simple framework is discussed here within the framework of rate-

independent, incompressible plasticity which incorporates the third invariant
of overstress, J3* = 1/3 tr (s-ot) 3. The framework permits dependence on J2
and the third invariant, J3 = 1/3 tr s3, of deviatoric stress. If kinematic
hardening is employed, the second, J2" = 1/2 tr S2, and third, J 3*, invariant
of overstress, E = s-oz are permitted. Within the present model, J3* appears
explicitly in the yield function and in the evolution equations of the hardening
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variables a and R as a means of delineating stress states effects on both initial
yielding and work hardening. For example, in a free-end torsion test, J3* =

0, while for a uniaxial tension test, J3" = E13 /4, and for a uniaxial
compression test, J 3 * = -r-113/4. It becomes apparent that an even power of
J3*can be used to delineate torsion from tension and compression, and an odd
power of J3* delineates compression from tension.

It has long been hypothesized that J3* reflects a change of constraint on
slip as a function of stress state [33]. Slip occurs on planes oriented most
closely to the plane of maximum shear stress. As discussed previously, there
are an infinite number of such planes during uniaxial compression or tension,
and only two during a torsion test. It therefore seems reasonable to include
J3*2 as a means of accounting for heightened slip and subsequent accelerated
hardening which occurs in tension and compression compared to torsion.

In light of the discussion on substructure presented in the previous
section, this interpretation implies that the J3* level present during a particular
stress state may have a direct impact on the nucleation, evolution, and
orientation of dislocation substructures such as microbands, dense dislocation
walls and other deformation substructures such as twin planes which can
influence such processes as phase transformations. It is not, however,
intended for use in representation of textural anisotropy.

A yield function of the form

f (J 2 *,J 3 *) = 3J2* T(J2*'J3*) - R 2  (2)

is introduced where

' = 1 - 270-K J3*2/ 16J 2*
3 _ 3Vr(1.I_)KJ 3* / 8J2 * 3/ (3)

with the limitsO < K < land 1/2 < -t < 1. The form with =( 1 has
been employed [33] in the context of isotropic hardening to correlate tests on
thin walled tubes under axial tension and internal pressure subjected to
varying ratios of axial stress to circumferential stress. For ,I = 1, tension
and compression are equivalent on the basis of J2*, while for 4D = 1/2,
compression and shear are equivalent but tension has a higher effective stress
based on J2*. The yield function reduces to that of von Mises for K = 0, and
lies in-between the von Mises and Tresca criteria for nonzero K with ,P = 1.
Experimental observations (cf. [34,35]) often reveal that K is zero initially,
and develops with cumulative plastic strain, if at all. In general, it is
necessary to change the direction of the loading path in the deviatoric stress
plane at several values of finite prestrain to assign values of K and ,I, necessary
to model abrupt (nearly instantaneous) changes in flow stress based on J2*.
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We assume the following evolution equation for K:

* = - YO (4)

The normality flow rule is given by

DP = Il(S:n) n (5)

H

The Macaulay brackets are defined as < g > = g for g > 0 and < g > = 0 for
g_50. The unit normal vector n is given by

n - d___• (3 (T + J; q13K)E - 3J2- Kt) /llaf/aull (6)

Ilaf/a(ll
where Eii = sij - aij and tij =•,•kj - 2J2*bij. The parameters n and ý are given

by

16 J*4 + 9 r3(1--0 ; 6 2f
81 • 1J3 * _3/2 (7)

S= 274•J*/8J; 3 +3 /3(1-.4)/8J2

A total of N multiple hardening sets are employed using an Armstrong-
Frederick hardening/recovery format for the backstress, ox, i.e.

N
4X £ (8)

i=l

where the co-rotational rate of ai is given by
0i = Ci(Bi n. - Gi ai)p (9)

where n,= E/If 1 El, Gi is a nonlinear dynamic recovery function and p =

DP If. The evolution of the isotropic hardening variables are given by

1H = CiH-(Ri _R1)p (10)

Here, the function Hi(f) = f for "reversible" isotropic hardening and Hi(f) =

< f> for irreversible hardening (e.g. martensite formation).
We consider N hardening variable sets, representative of intermediate
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and long range components which account for the post-yield behavior.
Saturation values for the hardening variables contain an explicit dependence
on J3* i.e.

Bi =Biogia and ii = iRigil i = 1,...,N (11)

where

*2 *3 c 3t2(12)

gij = 1 +mji27J3
2 /4J23 +nJ3v/3J3* /2Jj 2  i=1,...,N; j = a,R

This representation renders the following conditions for i = 1,...,N and j =
a, R: pure tension; g! = (1 + mij + ni ), pure compression; g? = (1 + min -
n• ), and pure torsion; g? = 1. All rates are taken corotationally with the
intermediate configuration. Under a small elastic strain assumption these rates
are given by

: = & -(W - WP)'a + u.(W - WP) (13)

An expression similar to that derived by Dafalias (cf. [36,37]) for the

component of plastic spin associated with each backstress is written as

Wp = p D(ai'D P - D P-ai) (14)

where

PD = CjeCip (15)

The total plastic spin in (13) is given by

N
Wp= WP (16)

i=l

The plastic spin is the only feature of the present framework which may
reflect texturing processes, albeit indirectly.

The experimental data of the compression and torsion data was
correlated using the above framework. These correlations are depicted in
Figures 4a and 4b. The sequence effects observed in Figure 1 for
compression followed by torsion and torsion followed by tension tests, were
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not adequately correlated using this preliminary model framework, however.
It is likely that the rate coefficients, Ci, are also history dependent, a feature
not considered here. The correlation parameters are given in Table 2.

-0t SS 304L0

6 , 0.0004 sec SS 304L
1"0 Axial Extension

'I O

(a) *o ,as -.'a " '. 2 5 (b) , a 3
LI, (b)

Figure 4 Model correlation of SS 304L compression and free-end
torsion experimental data (a) equivalent stress versus equivalent
plastic strain (b) axial stress versus shear strain.

Discussion and Conclusions
Finite compression, shear and finite strain sequences of

compression/shear and shear/tension have been performed on SS 304L. It has
been shown that the dislocation substructure and the degree of strain-induced
martensitic transformation for this material depends on the stress state during
finite deformation. Based on this result and on the findings for other fcc
materials that textural anisotropy must be augmented by anistropy induced by
substructure (cf. Hansen and Jensen [21]), it is argued to include in the
macro-scale theory the influence of the third invariant of the overstress in the
flow potential and in the evolution equations for internal variables which
represent material hardening. Likewise, micro-scale theories such as
continuum crystal plasticity should be developed to include appropriate sub-
grain scale constraints to represent formation of LEDS and associated
anisotropy; in this case, it may be necessary to partition the dislocation
density into mobile and immobile parts, permitting formation of low energy
structures of the latter.

It should be noted that the only source of anisotropy in the macro-scale
theory presented here is the backstress, a. More sophisticated forms of
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anisotropy may be introduced, for example, in the flow potential and in terms
Of elastic anisotropy associated with texture effects. In so doing, however,
care must be taken to introduce evolution of the anisotropy consistent with the
physics of texture development and the formation of LEDS. As is the case
of representing LEDS in crystal plasticity theory, the introduction of evolving
anisotropy in macro-scale models requires further developments likely rooted
in micromechanics.

Table 2. Parameters used to correlate experimental data

Parameter Value Parameter Value

-t 1.0 R2° 690 MPa

CK 4.6 = C1  m1a 0.25

R 0.44 m2a 0.25

Ro 210 MPa miR 0.25

N 2 m2lR 0.667

C1  4.6 G, 1.0

C2  1.2 G2 1.0

B1
0  8.0 MPa r, 0.0 MPa-1

B2
0  160 MPa '2 0.002 MPa1

RIO 112 MPa
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Abstract
Thin-walled structures of interest to the U. S. Army, such as rifle

barrels, rocket casings, helicopter blades and containment vessels are
often constructed of layers of anisotropic, filament or fiber-reinforced
materials which must be designed to remain elastic. A proper assess-
ment of end or edge effects in such structures is of fundamental impor-
tance to U. S. Army technology. The extent to which local stresses,
such as those produced by fasteners and at joints, can penetrate gird-
ers, beams, plates and shells must be understood by the designer.
Thus a distinction must be made between global structural elements
(where Strength of Materials or other approximate theories may be
used) and local elements which require more detailed (and more
costly) analyses based on exact elasticity. The neglect of end effects
is usually justified by appeals to some form of Saint-Venant's principle
and years of experience with homogeneous isotropic elastic structures
has served to establish this standard procedure. Saint-Venant's princi-
ple also is the fundamental basis for static mechanical tests of material
properties. Thus property measurements are made in a suitable gage
section where uniform stress and strain states are induced and local
effects due to clamping of the specimen are neglected on invoking
Saint-Venant's principle. Such traditional applications of Saint-
Venant's principle require major modifications when strongly anisotro-
pic and composite materials are of concern. For such materials, local
stress effects may persist over distances far greater than is typical for
isotropic metals. In this paper, we describe plane elastostatic problems
where anisotropy induces such extended Saint-Venant end zones.
The paper is a review and a comprehensive list of references is given
to original work where details of the analyses may be found. The
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implications of such extended end zones due to anisotropy are far
reaching in the proper analysis and design of structures using
advanced composite materials.

1. Introduction
A proper assessment of end or edge effects in structures is of fun-

damental importance in structural engineering analysis and design.
The extent to which local stresses, such as those produced by
fasteners and at joints, can penetrate girders, beams, plates and shells
must be understood by the designer. Thus a distinction must be made
between global structural elements (where Strength of Materials or
other approximate theories may be used) and local elements which
require more detailed (and more costly) analyses based on exact elas-
ticity. The neglect of end effects is usually justified by appeals to some
form of Saint-Venant's principle and years of experience with homo-
geneous isotropic elastic structures has served to establish this stan-
dard procedure. Saint-Venant's principle also is the fundamental basis
for static mechanical tests of material properties. Thus property meas-
urements are made in a suitable gage section where uniform stress
and strain states are induced and local effects due to clamping of the
specimen are neglected on invoking Saint-Venant's principle. For
recent reviews of Saint-Venant's principle, see [1,2].

Such traditional applications of Saint-Venant's principle require
major modifications when strongly anisotropic and composite materials
are of concern. For such materials, local stress effects persist over
distances far greater than is typical for isotropic metals. The implica-
tions of such extended end zones due to anisotropy are far reaching in
the proper analysis and design of structures using advanced composite
materials.

In this paper, we describe plane elasticity problems where aniso-
tropy induces such extended Saint-Venant zones and we provide
results for the characteristic decay lengths in terms of geometric and
material parameters. The paper is a review and gives a comprehen-
sive list of references to original work where details of the analyses
may be found.

2. Plane deformations of rectangular strips
Let OXYZ denote a fixed, right-handed Cartesian reference frame.

We consider an homogeneous elastic body which, if undeformed,
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occupies the region 0• X, I Y I < H, I Z I< T. We shall regard the thick-
ness, T, of the body as either infinitesimal or infinite and we shall
assume that the deformation of the body is governed by the equations
of static linear elasticity. All faces of the body are traction free except
X=0 on which any combination of stress and/or displacement may be
prescribed which induce stresses in the body that decay as X->oo.
(Thus, the stresses on the end X=0, whether known or not, must,
necessarily, be self-equilibrating.) We shall assume that the
infinitesimally thin body is in a state of plane stress with the Cartesian
components rxz, ryz, and czz of the stress tensor all zero; we shall
assume that the infinitely thick body is in a state of plane strain with the
Cartesian components F,,, Eyz, and e,., of the strain tensor all zero.
Except for different values of the elastic constants, the governing equa-
tions are identical mathematically. In both cases, we assume that the
body is fully anisotropic in the XY-plane in the sense that 'XX, Eyy, and
2Fxy, regarded as the components of a column vector e-[el, e 2 , e 3 ]T
are related to cxx,,'yy, and rxy, regarded as a column vector
S-[S1, S2, S3 ]T, by the relation

Fel 013i 0312 1316S1
e=Bs , that is, e 2 =1312 022 026 S2 , (1)

where B is the (symmetric) compliance matrix and where we have fol-
lowed the usual subscript notation. We henceforth refer to the problem
of computing the stresses in either case (plane stress or plane strain)
as the anisotropic strip problem.

If the dimensionless Airy stress function ý(x, y) is introduced,
where

x =X/H , y = Y/H, (2)

and
'CXK= yy, 'ryy= xx , 'rxy=- xy (3)

(the comma denoting partial differentiation), then 0 satisfies

022@, xXXX- 2 3 260, xxxy + (213 12 + 066), xxYyy (4)
-21060,xyyy+P1x0,yyyy=0, O<x, ly I <1 .
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If the material is transversely isotropic (or orthotropic) so that

016 = 12 6 = o, (5)

then (4) simplifies considerably. For an isotropic material, in addition to
(5), we have

011 = 022 = ( _ V2)E , 12 =V1 + W)E , 01366 = 2(1 + v)/E, (6)

where the constants E and v are Young's modulus and Poisson's ratio,
respectively, and (4) reduces to the biharmonic equation

,xx + 20,xxyy + O,yyyy = 0. (7)

The classic approach to analyzing Saint-Venant's principle in the
isotropic case is to seek solutions of (7) of the form

-= e--YxF(y) , (8)

where y is a constant. This leads to a fourth-order eigenvalue problem
for F(y) on l y I <1, where the eigenvalues y are complex. This gives
rise to the celebrated Fadle-Papkovich eigenfunctions with associated
eigencondition

sin 2y =2y. (9)

The decay rate for Saint-Venant end effects is given by the real part of
the root of (9) of smallest real part and so

Ry= 2.1 . (10)

(See [1], [3, p.62]). Thus the stresses ,r decay exponentially from the
end X=0 as

",r - Ke -kx (11)

where
2.1

k 2.1 (12)
H
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is the decay rate. Thus the characteristic decay length X;=1/k= H/2.1.
If, instead, we use the characteristic decay length X*=-(In 100);% (the
distance over which the right side of (11) decays to 1% of its value at
X=0), we find that

X* = 2H. (13)

This result mathematically substantiates the engineering rule of thumb
that Saint-Venant end effects in the isotropic case are "negligible" at a
distance of approximately one strip width from the end.

The preceding approach was used by Choi & Horgan [4] for a fully
anisotropic strip governed by equation (4). The eigencondition analo-
gous to (9)-see equation (18) of [4]-is considerably more compli-
cated. In particular, this condition involves the elastic constants .
For a specially orthotropic (or transversely isotropic) material where (5)
holds, the results simplify somewhat. Of special interest in [4] was the
case of strongly anisotropic materials (modeling fiber-reinforced com-
posites) where the longitudinal Young's modulus EL }* ET or GLT. It
was shown in [4,5] that the exponential rate of stress decay from the
loaded end is then given by

k=-- (GL T/EL)Y1 (14)

H
and so the characteristic decay length , = 1/k is

X = H (EL/GLT),/2. (15)

For a graphite-epoxy composite, for example, where EL/GLT = 33.3,
(14) yields

k = 0.5442/H (16)

which is four times slower than the corresponding decay rate (12) for
isotropic materials (see, e.g., [4,5] for a discussion). Thus the Saint-
Venant end zone for plane deformations of this composite material is
approximately four specimen widths. Consequently, in mechanical
testing of material properties for composites with this order of magni-
tude for the EL/GLT ratio, specimen aspect ratios of at least 10:1 would
be required.

The asymptotic result (14) was derived from the appropriate
eigencondition in [4] and provides a remarkably accurate estimate for
the exact decay rate. For example, for a graphite-epoxy composite,
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the estimate (16) is very close to the exact decay rate

k = 0.5640/H (17)

computed numerically in [4]. Illustrative examples involving extension
and bending of strips which show the significant difference in stress
decay between isotropic and anisotropic materials are discussed in [4]
and [5].

The design formulas (14) and (15) were established in the course
of studies [4,5,6] on plane orthotropic elasticity. The results have been
widely adopted in the literature on composite materials. For example,
the role of such results in designing test specimen geometries for
mechanical testing of fiber-reinforced composites is discussed in the
SESA monograph by Whitney et al. [7] and in the text by Carlsson and
Pipes [8] on experimental characterization of advanced composite
materials. A finite element study by Carlsson et al [9] on end effects in
graphite/epoxy bolted joints has shown very good agreement with (14)
and (15). Further finite element analyses are reported in Arridge and
Folkes [10], Holt and Hope [11], Dong and Goetschel [12], and
Goetschel and Hu [13]. The presence of extended Saint-Venant edge
zones in composites has led to a modification of the ASTM test D198
to measure the shear modulus of anisotropic beams by flexural
methods (Gromala [14]); see also Sandorff [15] and Sullivan and Van
Oene [16]. The implications of (14) and (15) for the ASTM D3410
specimen geometries recommended for the IITRI Compression Test
Method is discussed by Bogetti et al [17] who use a finite element
approach, in conjunction with (14) and (15), to evaluate the appropri-
ateness of test methods for strongly anisotropic composite laminates.

From (9) it is seen that, in the isotropic case, the eigencondition is
independent of the two elastic moduli E and v. (It is well known that
the stresses are also independent of the elastic constants in this case.)
Likewise, although an orthotropic (or transversely isotropic) strip
(s16 = P26 =0) depends on four elastic constants, Horgan & Simmonds
[18] have shown that the analogous eigencondition depends only on
one combined elastic parameter,

_031 1122
E= (18)

21312 + 1366

This facilitates the presentation of results for whole classes of specially
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orthotropic materials as shown in Fig. 1, where h=2H. The charac-
teristic decay length (i.e., the distance over which end effects decay to
1% of their end values) versus a nondimensional material parameter is
plotted and the results for various materials are indicated by the dots
shown on the curves. The decay length for an isotropic material is
shown by the dark square. It is seen that the latter has the smallest
decay length and that this is approximately equal to the width of the
strip. Fig. 1 can be used directly in the design process to account for
anisotropic end effects. (We are grateful to Dr. M. P. Nemeth of NASA
Langley Research Center for his collaboration in generating Fig. 1.)

In recent work [19] we have returned to the fully anisotropic
material governed by (1) and (4) where six elastic constants are
involved. It is shown in [19] that the associated eigencondition
depends now on two dimensionless elastic parameters only. This has
allowed us to numerically determine the Saint-Venant decay length for
the fully anisotropic strip. The results in [19] are presented in a form
immediately accessible to designers. Thus, for any arbitrary degree of
anisotropy, (or, equivalently, for any off-axis orientation of a fiber-
reinforced strip), the numerical data allow one to determine the Saint-
Venant decay length precisely. The results should have widespread
application to structural mechanics issues such as assessing end con-
straint effects in mechanical testing (in particular, for the off-axis ten-
sion test), determining the influence of fasteners, joints, cut-outs, etc.,
in composite structures and in the evaluation of the limits of strength-
of-materials formulas when applied to composites.

Plane problems for symmetric sandwich laminates have also been
investigated. Choi & Horgan [20] have studied exact decay rates for
two phase sandwich strips, with isotropic layers, subject to self-
equilibrated end loads. For a relatively soft inner core, slow decay of
end effects was again established. Asymptotic formulas for the
estimated decay rate similar to (14) were obtained. (See also [5].)
Related experimental and finite element calculations have been
reported (see the references in [2]). An interesting study of the decay
of Saint-Venant end effects for plane deformations of a laminate com-
posite subject to (partial) interface debonding has been carried out by
Benveniste [21] who showed that debonding has the effect of reducing
the exponential decay rate.
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3. Concluding remarks
For illustrative purposes, we have confined attention in the preced-

ing to plane linear elastostatics. Extended end effects due to aniso-
tropy also occur in three-dimensional problems such as axisymmetric
deformations of solid or hollow circular cylinders (see, e.g., [5], [22],
[23] and the references cited therein and in [1,2]). Slow stress decay
for strongly anisotropic materials has also been observed experimen-
tally. In the course of conducting torsional pendulum tests designed to
measure the longitudinal shear modulus of a polymeric composite,
Folkes and Arridge [24] encountered difficulties (because of end
effects) in obtaining values of this modulus which are independent of
specimen aspect ratios (length/width ratio). Meaningful results were
obtained only for samples whose aspect ratios exceeded 100. The
data in [24] for polystyrene fibers in a matrix of polybutadiene indicate
that EL/GLT is about 280 and so characteristic decay lengths of the
order of several specimen widths are predicted by the theoretical
results. Further tests are described in Arridge et al. [25] and Arridge
and Folkes [10]. A review of this work is given by Arridge and Barham
[26]. See also Section 4 of [2] for further discussion of the application
of (14) and (15) in the polymer physics literature. Experimental work
by Stubbs [27] on Saint-Venant end effects in cruciform fabric speci-
mens shows qualitative agreement with (14) and (15). Of course,
many of the applications of Saint-Venant's principle to highly-drawn
polymers and fabric materials may well require consideration of inelas-
tic and nonlinear effects. While some progress has been made in this
direction (see, e.g., [1,2,28-32] and the references cited therein), the
consideration of additional effects due to anisotropy and material inho-
mogeneity remains a formidable challenge.

Acknowledgements
This work was supported by the U. S. Army Research Office under

Grant DAAL-03-91-G-0022. We are grateful to Dr. M. P. Nemeth,
NASA Langley Research Center, for many helpful discussions, in par-
ticular in connection with Fig. 1

References

1. Horgan, C. 0., and Knowles, J. K., Recent developments concern-
ing Saint-Venant's principle, Advances in Applied Mechanics (T.
Y. Wu and J. W. Hutchinson eds.), 23 179-269, Academic Press,

575



New York, 1983.
2. Horgan, C. 0., Recent developments concerning Saint-Venant's

principle: an update, Appl. Mech. Rev. 42 (1989), 295-303.
3. Timoshenko, S. P., and Goodier, J. N., Theory of Elasticity, 3rd

ed, McGraw-Hill, New York, 1970.
4. Choi, I., and Horgan, C. 0., Saint-Venant's principle and end

effects in anisotropic elasticity, J. App/. Mech. 44 (1977), 424-430.
5. Horgan, C. 0., Saint-Venant end effects in composites, J. Compo-

site Materials, 16 (1982), 411-422.
6. Horgan, C. 0., Some remarks on Saint-Venant's principle for

transversely isotropic composites, J. Elasticity 2 (1972), 335-339.
7. Whitney, J. M., Daniel, I. M., and Pipes, R. B., Experimental

Mechanics of Fiber-Reinforced Composite Materials, SESA Mono-
graph 4, SESA (1982).

8. Carlsson, L. A., and Pipes, R. B., Experimental Characterization of
Advanced Composite Materials, Prentice-Hall, New Jersey, 1987.

9. Carlsson, L. A., Sindelar, P., and Nilsson, S., Decay of end effects
in graphite/epoxy bolted joints, Composites Science and Technol-
ogy, 26 (1986), 307-322.

10. Arridge, R. G. C., and Folkes, M. J., Effect of sample geometry on
the measurement of mechanical properties of anisotropic materi-
als, Polymer 17 (1976), 495-500.

11. Holt, J. S., and Hope, P. S., Displacement oscillation in plane qua-
dratic isoparametric elements in orthotropic situations. Int. J. for
Numerical Methods in Engineering, 14 (1979), 913-920.

12. Dong, S. B., and Goetschel, D. B., Finite element analysis of edge
effects in laminated composite plates, J. Appl. Mech. 49 (1982),
129-135.

13. Goetschel, D. B., and Hu, T. H., Quantification of Saint-Venant's
principle for a general prismatic member, Computers and Struc-
tures, 21 (1985), 869-874.

14. Gromala, D. S., Determination of modulus of rigidity by ASTM
D198 flexural methods, J. of Testing and Evaluation 13, (1985),
352-355.

15. Sandorff, P. E., Saint-Venant effects in an orthotropic beam, J. of
Composite Materials, 14 (1980), 199-212.

576



16. Sullivan, J. L., and Van Oene, H., An elasticity analysis for the
generally and specially orthotropic beams subjected to concen-
trated loads, Composites Science and Technology, 27 (1986),
133-155.

17. Bogetti, T. A., Gillespie, J. W., and Pipes, R. B., Evaluation of the
IITRI compression test-method for stiffness and strength determi-
nation, Composites Science and Technology, 32 (1988), 57-76.

18. Horgan, C. 0., and Simmonds, J. G., Asymptotic analysis of an
end-loaded, transversely isotropic, elastic, semi-infinite strip weak
in shear, Int. J. Solids Structures 27 (1991), 1895-1914.

19. Crafter, E. C., Heise, R. M., Horgan, C. 0., and Simmonds, J. G.,
The eigenvalues for a self-equilibrated, semi-infinite, anisotropic
elastic strip, J. AppL Mech. (in press).

20. Choi, I., and Horgan, C. 0., Saint-Venant end effects for plane
deformation of sandwich strips. Int. J. Solids Struct., 14 (1978),
187-195.

21. Benveniste, Y., On the effect of debonding on the overall behavior
of composite materials, Mech. of Materials 3 (1984), 349-358.

22. Horgan, C. 0., The axisymmetric end problem for transversely iso-
tropic circular cylinders, int. J. Solids Struct. 10 (1974), 837-852.

23. Simmonds, J. G., An asymptotic analysis of end effects in the
axisymmetric deformation of elastic tubes weak in shear: higher
order shell theories are inadequate and unnecessary, Int J. Solids
Struct. 29 (1992), 2441-2461.

24. Folkes, M. J., and Arridge, R. G. C., The measurement of shear
modulus in highly anisotropic materials: the validity of St.
Venant's principle, J. Phys. D: Appl. Phys., 8 (1975), 1053-1064.

25. Arridge, R. G. C., Barham, P. J., Farrell, C. J., and Keller, A, The
importance of end effects in the measurement of moduli of highly
anisotropic materials, J. Materials Sci., 11 (1976), 788-790.

26. Arridge, R. G. C., and Barham, P. J., Polymer elasticity: discrete
and continuum models, Advances in Polymer Science, 46 (1982),
67-117.

27. Stubbs, N., Experimental estimation of Saint-Venant's end effects
for cruciform fabric specimens, J. Reinforced Plastics and Compo-
sites, 3 (1984), 181-192.

577



28. Horgan, C. 0., and Knowles, J. K., The effect of nonlinearity on a
principle of Saint-Venant type, J. Elasticity 11 (1981), 271-291.

29. Horgan, C. 0., and Payne, L. E., On Saint-Venant's principle in
finite anti-plane shear: An energy approach, Arch. Ration. Mech.
Anal., 109 (1990), 107-137.

30. Abeyaratne, R., Horgan, C. 0., and Chung, D.-T., Saint-Venant
end effects for incremental plane deformations of incompressible
nonlinearly elastic materials, J. AppL Mech., 52 (1985), 847-852.

31. Horgan, C. 0., Payne, L. E., and Simmonds, J. G., Existence,
uniqueness and decay estimates for solutions in the nonlinear
theory of elastic, edge-loaded, circular tubes, Quart. Appl. Math.
48 (1990), 341-359.

32. Horgan, C. 0., and Payne, L. E., A Saint-Venant principle for a
theory of nonlinear plane elasticity, Quart. Appl. Math. 50 (1992),
641-675.

578



SESSION VIB:
DYNAMIC BEHAVIOR

Chairman: Dr. T Nicholas
AF Materials Laboratory

579



Experimental Evaluation of Strain,
Strain-Rate and Temperature

Dependance of Flow Stress at High
Strain Rate

S. Nemat-Nasser
University of California, San Diego

"PAPER NOT AVAILABLE"

581



EFFECT OF GAS-PRODUCING AND POLYMORPHIC REACTIONS
ON STRESS WAVE PROPAGATION

Prof. Thomas J. Ahrens* and Mr. Guangqing Chen
Lindhurst Laboratory of Experimental Geophysics,

Seismological Laboratory, California Institute of Technology
Pasadena, CA 91125

Abstract
Both solid to gas (CaSO4 + SiO --- CaSiO3 + SO 2 and

Si3 N4 + 3C (diamond) --> and 3SiC + 2 N2 ) and polymorphic reactions,
e.g. GeO (glass, 3.7 g/cm 3 ) to GeO2 (rutile, 6.3 g/cm 3 ) can be shock-
induced at ballistic velocities. Because of the endothermic nature of
the gas- producing reactions, the extent of reactions observed are
limited to interfaces. Moreover, polymorphic reactions (such as the
GeO2 reaction) occur upon dynamic compression and not only upon
isentropic release. The transformation of GeO2 from glass to rutile
appears, upon analogy with similar reactions in the Si0 2 system, to be
a highly energy hysterectic material which merits study as a stress
wave mitigating material.

1. INTRODUCTION
Shock-induced endothermic solid-solid phase changes and gas-

producing reactions have been studied in material consolidation and
synthesis, especially starting with powdered materials (e.g. Boslough,
[1]; Tan et al.[6]; Erskine and Nellis [2]; Yang et al. [7]). Although
thermal effects induced by shock compression is the major factor
inducing chemical reactions under dynamic stress loading, unloading
within the time scale of microseconds can be expected to proceed very
differently than under equilibrium conditions. Gas-producing reactions,
as well as solid-solid phase changes involving large density changes
with their potential effects on partitioning of linear momentum, may
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have some ballistic application. Particularly, we have examined the

following four reactions:

Si3 N4 + 3C (diamond) ---> 3SiC + 2N 2 1" (1)

CaS04 (anhydrite) + Si0 2 --- CaSi0 3 (wollastonite) + S03 1T (2)

CaSO 4 + SiO ---> CaSiO 3 + SO 2 1" (3)

GeO2 (glass) --> GeO2 (rutile) (4)

2. GAS-PRODUCING REACTIONS
A series of recovery experiments and bulk chemical analyses

were conducted on the recovered samples. No (solid) reaction
products are found for reactions (1) and (2), but reaction (3) is
discovered to take place to a varied extent in different shots. These
results contradict Gibbs' formation energy calculations, which allow all
three reactions to proceed below calculated after-shock temperatures.

The shock experiments utilize a 20 mm gun at Caltech's Shock
Wave Lab. Reactants (in powder form, particle sizes -10-30 pm,
except Si3 N4 is whisker shaped) are mixed and pressed in 304
stainless steel containers. The sample chambers are usually
evacuated to -30 millitorr until just before the shots are fired. The shot
parameters are listed in Table 1. Flyer plates are tantalum unless
specified otherwise in parentheses. Hugoniot pressures are calculated
following the formulation outlined by Yang et al. [7] assuming 100%
crystal density, actual reflected pressures are higher, but non-uniform.

Using reactant Hugoniots as release paths (assuming the main
part of the reaction takes place during the late stage of release), the
calculated average after-shock temperatures are 2700-3000"C; for
shot 1100, because of the inverted mass ratio, the same temperature
for shot 1106 is 1200'C. Recovered samples are analyzed with SEM,
electron microprobe, and x-ray diffraction. The SEM micrographs of
shots for which reaction (1) was studied (Fig. 1) show Si3 N4 is molten
under compression, but diamond is intact. Although in some small
regions near boundaries of the two reactants decrease in nitrogen K(,
x-ray intensity relative to silicon intensity is detected, it is believed to be
an effect of geometric absorption by neighboring carbon atoms. All
prominent peaks in XRD spectra are identified with diamond/Si 3 N4
peaks, therefore the reaction product must be lower than the detection
limit (about 2%), and gas production is not enough to account for the
sample holder explosions reported by Yang et al. For shot 1066,
reaction (2) does not happen, but an interesting feature is discovered
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in the sample: quartz grains were apparently molten but anhydrite was
not (Fig. 2) despite Si02's higher melting point (1500"C vs. CaSO 4 's
1400'C).

Table 1: Recovery experiments on three gas-producing reactions

Starting mix Initial Shot Flyer plate Pressure
(wt. %) density number velocity (km/s) (GPa)

(%)

Si3 N4 diamond
16 84 65 953 1.93 41.9
16 84 70 961 1.95 42.5
20 80 66.6 962 1.97 43.0
16 84 65.5 968 1.96 42.9
16 84 60 971 1.90 (SS 304) 43.5
16 84 65 1095 1.90 41.2
16 84 65 1096 1.69 35.9
16 84 65 1097 1.98 43.2
80 20 60 1100 1.82 35.8

1CaSO41 SiO2 I
69 31 83 I 1106 I 1.87 I 34.9

CaS04 SiO

67 33 89 1098 2.06 (W)
67 33 82 1099 1.58

In comparison to the inert reactions (1) and (2), reaction (3) is quite
active. The bulk reaction product (CaSiO4 ) yield is estimated at about
30% for shot 1098. Reduction of a factor of 4-5 in sulfur content is
seen while calcium is unchanged, and the deficit in atomic number is
approximately made up with incorporation of silicon which
demonstrates the importance of SiO participation. To find the initiation
of the reaction, shot 1099 was conducted at a lower pressure. Clearly
separated reaction and no-reaction zones are seen in the SEM
micrographs (Figs. 3a, b). Both materials appear to have been molten.
In the no-reaction zones, there may be some melting in SiO, especially
at grain boundaries, but CaSO4 remains solid during compression.
Like quartz, SiO also has a higher melting point (-1700"C) than
CaSO4.
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Fig. 1: SEM micrograph of shot Fig. 2: SEM micrograph of shot
1100. Light area is Si3N4, voids 1106. Darker area is quartz,
where diamond grains plucked lighter area anhydrite.
out indicate weak bonding.

Fig. 3a: SEM micrograph of shot Fig. 3b: Shot 1099 away from
1099 near sample edge. Dark edge. Large grains are SiO, fine-
gray area is SiG, light gray area is grained material is CaSO4.
~Ca4Si3SO13. Black area is
epoxy.

The SEM electron beam spot is less than l pm, but the
dimension of x-ray emitting volume could be larger due to electron
scattering in the sample. A "fuzziness" function is assumed to
convolve with the "true" chemical composition to give the observed
composition. The function form is taken to be

1 ex 2 /a 2  (5)
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f f(x)dx = 1 (6)

where 2a is a measure of distance scale of the SEM analytic
resolution. A comparison was made between a pressed boundary of
calcium sulfate and quartz and calculation (convolution of the above
function and a step function), a -0.53 pim was found to provide the
best fit. Denote g(x) as the ratio of (Ca+S)/O, and the general solution
of one dimensional diffusion is

1
g(x) = 1 erfc (x/b) when x>0, (7)

for the boundary condition g(x < 0) = 1/2.
A fit to the shocked sample profile (solid curve) (convolved with

f(x)) gives the diffusion length b - 1.5 pm (Fig. 4).

The molar ratio experimentally observed resulting from devolatilization
shows some scatter. For simplicity, we assume an average of 20%
devolatilization in the x > 0 half space, in which the ratios of S/O, Ca/O
are:

gs (x) =1/ 2x 0.8 e fcxb,(a
1.0+ 0.8 erfc(x/b), (8a)

1.0 +0. 8

gs + gca = g(x) (9)

Sgs (x')e-(x'-x)2/a 2 dx'
(S/Ca)(x) = ,_X2/2 (10)

f__g0 5(x')e x dx'
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Molar ratio (Ca+S)/O

"* Shot1106

0.6 - Shot1109
"* Pressed
----. (a,b)= (0.53,0.)

t t -- (a,b)=(0.53,1.5)

0.4A
C9,504 ! Si02

c~o LSiO 2

0.2

I p I I I I I

-10 -8 -6 -4 -2 0 2 4 6 a 10

Distance (micron)

Fig. 4. Chemical composition versus distance as determined with a
JEOL Scanning Electron, Camscan #2, Microscope with Tracor
Model Th 3/54-6901 energy dispersive analyser. Molar ratio of
(Ca+S)/O versus distance across CaSO4 -SiO 2 interfaces. Length
parameters a and b are indicated for dashed and solid curves. The
dashed curve is theoretical curve Eq. 5 fit to data obtained from a
cold pressed CaSO4 -> SiO 2 interface. The solid curve is the
convolution of Eqs. 5 and 7 for shock-induced reaction (2) occuring
across CaSO4 - SiO 2 interfaces in two shock recovery experiments.

Moreover, we observe an indication of S loss as the ratio of S/Ca
decreases upon going into the SiO 2 from the CaSO4-SiO2 interface.

Overall, devolatilization, DV, the mass fraction of total CaSO4 is
given by

3f (gca -gs)dx
DV= ogca(X<0)R(1
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where R is the average anhydrite grain size (- 100 [im). The factor 3
takes into account the three dimensional effect. Evaluation of the
formula yields DV = 0.006.

Gibbs' formation energy calculations for reactions (1) and (2)
give initiation temperatures of 1800"C and 900"C, respectively, and
reaction (3) is allowed under STP or higher temperatures.

3. GeO2 PHASE TRANSITION FROM GLASS TO RUTILE
STRUCTURE

During the last two decades a number of experimental shock
wave studies of silicates demonstrated that large (typically 30%)
increases in density due to phase transitions occurred during
compression. Upon release, much of the mechanical work (energy)
expended in compressing material within the phase transition regime
remains irreversibly in the material (Figs. 5 and 6). Both in the regime
of phase change, the so-called mixed phase regime and the stress
regime where the material has been completely driven into the high
pressure phase gives rise to excess stress wave attenuation in silicate
material [5]. We initially discuss shock properties of quartz because a
considerable amount of research has been done in this area.
However, we believe the shock pressures in Si0 2 are too high to be of
ballistic interest, whereas GeO 2 transforms in a stress range
achievable at ballistic velocities.

The fraction of the shock wave energy remaining in material
upon isentropic release is given by

F = (ERH- ERel)/ERH (12)

In Eq. 12, ERH is the usual Rankine-Hugoniot internal energy
increase across a shock front and ERel is the internal energy
transformed to kinetic energy upon isentropic release from high shock
to zero pressure. Explicitly,

ERH = P1 (Vo-V 1)/2 (13)

and
ERea = , OPdVlisentrope 

(14)
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Fig. 5. Pressure-volume data for quartz and related release paths.
Locus of compression states define Hugoniot in 3 regimes: Qz is
quartz regime, MP is quartz plus stishovite regime, and St is
stishovite or high pressure phase regime. Release paths are
indicated. Initially steep unloading and then flattening at -10 GPa
gives rise to very hysteretic behavior (after Sekine et al. [4]).

TJA91115SFD

where P 1 is the shock pressure, V, is specific volume, and Vo is the
initial (unshocked) specific volume of the material. Using a model in
which successively greater quantities of high pressure phases are
induced with shock pressure upon shocking SiO 2 (either) starting with
quartz or fused quartz as a lower pressure phase, complete
transformation to the high pressure phase, stishovite, is believed to
occur at 30 GPa. As shown in Fig. 5, upon unloading from the MP
regime, the shocked material initially unloads as a mixture of high
pressure and low-pressure phase. Upon reaching a pressure of -8
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GPa transformation to low density (high specific volume) quartz or
glass occurs. As indicated in Fig. 6, the fraction of shock internal
energy deposited in the material is 0.4 to 0.7 of the total energy in
going from 20 to 100 GPa.

00 SiO2

4-

C','

0 20 40 60 80 100

Pressure (GPa)
Fig. 6. Fraction f' of Rankine Hugoniot energy irreversibly deposited
in silicate as a function of shock pressure. TJA93013SFD

We believe SiC 2 can be demonstrated to be a very attenuative material
for hypervelocity impact because of the strong irreversibility of the Si0 2
quartz to stishovite (rutile) transition. However, that transition occurs at
14 GPa, a pressure achieved only in a small volume (on the order of
the projectile volume) at ordnance speeds (of 1 km/sec). In contrast,
GeO2, which has a very similar phase diagram, (Ge is immediately
below Si in the standard periodic table of the elements) this transition
has been demonstrated to occur at -4 GPa [3] (Fig. 7). It is expected
that GeO2, like SiO 2 , will be very attenuative for all the same reasons
in the ballistically important 4-10 GPa stress range.

Note that upon achieving pressures of 20 GPa, the GeO 2 glass
(3.6 g/cm 3 ) achieves density of rutile structure (6.3 g/cm 3 ).

Acknowledgments: Supported under DAALOG-92-G-0218 and
DAAL03-92-G-0192. Contribution # 5293, Division of Geological and
Planetary Sciences.
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Fig. 7. Hugoniot data for vitreous GeO 2 in density-pressure space.
Previous data of Jackson and Ahrens [3] do not resolve expected
difference between dynamic yield stress (HEL) and onset of phase
change at -4 GPa. TJA93015SFD
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Abstract
A summary of two experimental measurements of parameters pertain-

ing to adiabatic shear band formation is made. First, the rate of conversion
of plastic work to heat in metals is examined using a Kolsky (split Hopkinson)
pressure bar and a high-speed infrared detector array. Several experiments
are performed, and the work rate to heat rate conversion fraction, the relative
rate at which plastic work is converted to heat, is reported for 2024 aluminum
and Ti-6AI-4V titanium alloys undergoing high strain and high strain rate de-
formation. The functional dependence of this quantity upon strain and strain
rate is also reported for these metals. This quantity represents the strength of
the coupling term between temperature and mechanical fields in thermome-
chanical problems involving plastic flow such as shear band formation. Next,
the method of Coherent Gradient Sensing (CGS) is used to record the defor-
mation field around an adiabatic shear band emanating from a pre-crack or
pre-notch tip in C-300 steel loaded dynamically in mode-Il. The experimental
fringe patterns are fitted to the theoretical Dugdale crack deformation field by
using a least squares fitting scheme. This results in values for the shear band
length and the average shear stress acting on the shear band as functions
of time. The shear stress on the shear band decreases from 1.6 GPA at
initiation to 1.3 GPa during this propagation. An estimate of the stress-strain
behavior of the shear band material is made.

1. Introduction
The formation of adiabatic shear bands has recently received renewed

attention following the experimental measurements of the temperature rise in
adiabatic shear bands by Duffy (1984). In the past ten years these measure-
ments have helped motivate a considerable amount of modelling of adiabatic
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shear band growth which has recently appeared in the open literature. With-
out presenting an extensive review, it is helpful to recall some of the salient
and common features of the many models that have been made available.

Commonly, the formation or growth of an adiabatic shear band is mod-
elled as the competition between thermal softening and strain and/or strain-
rate hardening of a material under shear loading. Usually an approximate
model of thermal softening is added to the constitutive equation for a material,
the temperature is treated as an additional unknown and the heat conduction
equation is added to the field equations. This additional equation provides a
link between mechanical deformation fields and the temperature field, T(x, t),
and is given by

kV 2 T- (1)
PCp

where the dot refers to differentiation with respect to time, k is the thermal
conductivity, p is density, cp is the heat capacity, Q is defined below, a is
the stress, and ýP is the plastic strain-rate. The term on the right represents
heating due to irreversible plastic deformation (Taylor and Quinney, 1934;
Bever et al., 1973) If adiabatic conditions prevail, then the heat conduction
equation takes a more simple form, i.e.;

pcPT = fýO . (2)

where
)3 PCp. (3)

Wp
and

WjiP = 0,. ýP. (4)
Note that even for simple adiabatic conditions it is necessary to know the
material parameters such as Q, the work rate to heat rate conversion frac-
tion, before useful solutions to shear band problems can be obtained. Also
note that the constitutive behavior of the shear band material should be accu-
rately obtained before the results of models can be compared to experimental
measurements.

The net effect of the assumptions of the shear band model is the intro-
duction of a mathematical mechanism by which instabilities in the deformation
can be formed. When thermal softening is greater than strain and/or strain-
rate hardening, the material deforms, heats and becomes softer. Then, further
deformation occurs due to the lower strength generating more heat which in
turn softens the material more producing a "self-feeding" mechanism by which
an instability is formed. The purpose of this work is to examine both the mech-
anism by which plastic work is converted to heat, or, more specifically, the
material parameter 3, as well as the deformation field around an adiabatic
shear band as it forms in order to extract more information about the shear
band formation process itself.
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2. Experimental Apparatus

2.1 The Conversion of Plastic Work to Heat
To investigate the conversion of plastic work to heat, the Kolsky pressure

bar is used to deform the materials at high strain-rates (1O000-3000 s-1) in
this investigation. By assuming that the specimen deforms homogeneously,
the stress, strain-rate, strain and average velocity of the deforming speci-
men can be determined from the recorded incident, reflected and transmitted
pulses in the Kolsky bar (Kolsky, 1949). For further details of the pressure bar
technique the reader is referred to Lindholm (1965) and Follansbee (1985).

The temperature rise in the Kolsky pressure bar experiments is recorded
using a stationary, focused, high-speed, infrared (IR) detector array. A
schematic of the apparatus is shown in Figure 1. The detectors measure the
amount of incident IR radiation over a range of wavelengths and a calibration
curve is used to determine temperature from the voltage output. The detec-
tors are calibrated by heating a sample-with controlled surface finish-of the
specimen material to a known temperature while simultaneously recording the
detector output voltage. The calibration procedure precludes the need for any
knowledge of the specimen emissivity and, thus, greatly simplifies the tem-
perature measurement procedure. Calibration curves are evaluated for every
material investigated, and the resulting curves are invariably qualitatively very
similar to each other. Further details of the high-speed infrared measurement
technique can be found in Duffy (1984) and in Zehnder and Rosakis (1991
and 1993) and Mason (1993).

Assuming that homogeneous deformation of the specimen occurs, one
may easily calculate the plastic work rate density from the Kolsky bar using
equation (4). By measuring the temperature and differentiating it with respect
to time, T(t) is estimated, and by assuming that adiabatic conditions apply
during the experiment, Q is calculated from Eq (3). The density and heat
capacity (with its dependence upon temperature) may be found in the liter-
ature (e.g., Aerospace Structural Materials Handbook, 1985). Fortunately, it
is seen that the heat capacity for each of these materials does not change
significantly over the range of material temperatures anticipated during the
experiments (20-1300C).

2.2 The Formation of Shear Bands
Kalthoff (1987) and Kalthoff and Winkler (1987) have observed the for-

mation of adiabatic shear bands at the tip of dynamically loaded, station-
ary, pre-manufactured notches in plates made of C-300 steel. The pre-
manufactured notches are loaded dynamically in nearly pure mode-Il loading
conditions by an asymmetric impact in the area between the two pre-notches
on the edge of the plate. See Figure 2(a). When sufficient impact velocity
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FiGU RE 1 A schematic representation of the high-speed I-R detector array focussed
on a specimen in a Kolsky pressure bar. The detector array size and
orientation as focussed on the specimen is also shown.

is used, an adiabatic shear band is formed directly ahead of the pre-notch

as shown schematically in the figure. In the work described here, a similar
configuration is used. This configuration involves the dynamic asymmetric
loading of only one pre-notch and is schematically shown in Figure 2(b). The
use of only one pre-notch provides a simple loading geometry by which one
may observe the formation of adiabatic shear bands. The method of Coherent
Gradient Sensing (CGS) is used here in conjunction with high speed photog-
raphy to measure the deformation field around an adiabatic shear band as it
forms. For the sake of brevity the method may be described as an interfer-
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FiGUtRE 2 (a) The loading geometry observed by Kalthoff (1987) and Kalthoff and
Winkler (1987) to generate shear bands in C-300 steel at a pre-notch or
pre-crack tip. (b) The modified pre-notched geometry used in the present
investigation.

ometer producing fringe patterns that are equivalent to a contour map of the
hydrostatic stress in plane-stress loading situations. The fringe patterns may
be digitized and fit to known, expected solutions to produce measurements
of the important parameters of the experiment, one example being the stress
intensity factor in dynamic fracture experiments. The quality of the fits gives
indication of the validity of any assumptions made in the analysis. Complete
discussions of the method of CGS may be found in Tippur et al. (1989a) and
(1989b) and Rosakis (1993).

It is proposed here that the shear band formation at a dynamically
loaded mode-Il pre-notch may be modelled by the Dugdale strip yield model.
In such a model the shear band is assumed to be a one-dimensional line of
yielded material extending directly ahead of the stationary pre-notch or pre-
crack with a uniform shear stress acting upon it. Implicit in this approach to
modelling are a number of assumptions about the mechanisms of the nu-
cleation and growth of adiabatic shear bands. For example, it is assumed,
among other things,that the length of the shear band is determined by the far
field K di(t) that is acting on the pre-notch (small scale yielding is implied and
the magnitude of the shear stress on the yielded zone is chosen to nullify
the highest order stress singularity at the shear band tip). This assumption is
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perhaps the most restrictive, however it is useful because it gives a relation
between the stress intensity factor, the shear stress on the yield zone and
the length of the yield zone. In addition it is also motivated by numerical in-
vestigations of dynamic shear band growth [Lee (1990)] where no singularity
is found to exist at the growing shear band tip.

Although the assumptions and approximations of the model are some-
what limiting, the model is used here as a first attempt at analyzing the results,
and it should be emphasized that the quantitative conclusions are reported
as first estimates.

3. Results and Discussion

Aluminum at High Strain Rate (3000 s-')
140 T . . . . . . .. .

120 - o Raw Data for Two Detectors
Smoothed Average Temperature

100

S80

a~ 60

40

20-

0 , I , , , I , , , I , , I , , ,

150 200 250 300 350 400
Time (yzs)

FIGUR.E 3 The temperature data for 2024 aluminum. The solid line represents the
smoothed function which is differentiated to calculate /3.

3.1 The Conversion of Plastic Work to Heat
The measured temperature for 2024 aluminum deforming in the Kolsky

bar is plotted in Figure 3. The most significant difficulty in calculating /3 is due
to the problems associated with differentiation of the measured temperature.
Differentiation of a noisy signal has inherent instabilities, and usual numeri-
cal schemes do not work because they are formulated for numerically exact
functions. For that reason the measured temperature is smoothed before
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differentiation. An example of the smoothed temperature signal may be seen
in Figure 3 plotted with both noisy signals. Multiplying the derivative of the
smoothed temperature by pe and using equation (3) results in the evalua-
tion of 3 as seen in Figure 4. It can be seen in the figure that 3 for 2024
aluminum is strongly strain dependent; initially the relative rate at which work
is converted to heat is approximately 0.5 rising with strain to the traditionally
accepted 0.85-1.00 range for metals (Taylor and Quinney, 1934; Bever et al.,
1973).

Aluminum at High Strain Rate (3000 s-')
1.0

0.8

0.6

•- 0.4

0.2

0.0 I

0.0 0.2 0.4
Strain (m/m)

FIGURE 4 The work rate to heat rate conversion fraction for 2024 aluminum.

In contrast, the results of measurements of /3 in Ti-6AI-4V are seen
in Figure 5. Note that the form of /3 for Ti-6AI-4V titanium is different than
that of 2024 aluminum. Since quasi-static measurement of the stress-strain
behavior of Ti-6AI-4V titanium by the authors shows this alloy to be strain-rate
sensitive while 2024 is not strain-rate sensitive over this range of strain-rates,
this difference between the behavior of Ti-6AI-4V and the behavior of 2024
aluminum-in the same strain-rate range-may be connected to the strain-
rate sensitivity of the Ti-6AI-4V titanium. It is known that twinning occurs in
titanium alloys at high strain rates (Follansbee and Gray, 1989); that type of
change in deformation mechanism may explain the observed difference in the
conversion of plastic work to heat. Further work is needed to shed more light
on this issue.
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FIGURE 5 The work rate to heat rate conversion fraction is calculated for Ti-6AM-4V
titanium using the average of the temperature of the two detectors.

3.2 The Formation of Shear Bands
Fringe patterns are recorded using high speed photography after the

impact of the plate and the shear band formation is recorded in successive
stages of growth after the pre-crack tip is loaded as shown in Figure 6. For
the sake of brevity the actual photographs are not shown here (see Ma-
son, 1993). Fits of the theoretical fringe patterns to recorded fringe patterns
were performed assuming that KId (t) followed the solution of Lee and Freund
(1990). An example of one of the fits (performed at 31.5 /•s) can be found in
Figure 7. Acceptable agreement between the theoretical Dugdale field and
the experimentally measured field is seen.

The results of the fit for the shear stress on the shear band, To(t), and for
the shear band length, Rb(O) are plotted in Figure 8. The shear band length
increases with time, and a linear fit of the growth provides an estimate of the
shear band growth velocity of 320 m/s. The initiation occurs at approximately
26 its after impact, well within the domain of the Lee and Freund (1990)
solution. At this time the stress intensity is roughly 140 MPaý-f7. The shear
stress increases initially with time from 0.6 GPa to 1.6 GPa before the shear
band initiation. It is assumed that this effect is due to increasing load on the
pre-crack faces that are already in contact. After the shear band is initiated,
the shear stress decreases from 1.6 GPa to 1.3 GPa. This type of behavior
is expected since thermal softening is the acting mechanism by which the
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FIGURE 7 A check of the fitting procedure for t=31.5 ps. Data points should fall
alternately on light and dark fringes in the figure. It can be seen that the
fit is reasonably good for the forward fringe with less agreement found for
the rear fringe.

shear band forms. As the shear band grows it is expected that the shear
stress decreases due to thermal softening. The value of the shear band
length obtained from the fit is compared to the estimated shear band length
as measured by the authors directly from interferograms. This estimated
length is found by qualitatively comparing the recorded CGS fringe patterns
to the predicted fringe patterns. Acceptable agreement is seen.

The stress-strain behavior of the material in the shear band may be
estimated by using the reported stress in Figure 8 and by estimating the
strain from the crack opening displacement. Assuming that the shear band
has fixed thickness, tsb, and that the shear displacement decreases linearly
from the crack opening displacement to zero along the length of the shear
band, the average strain is given as

2ETt sb

This combined with the known values of shear stress in Figure Bgives a stress-
strain relationship for the shear band material For comparison, the constitutive
behavior of this material was measured using the Kolsky bar and are shown
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FIGURE 8 A plot of ro(t) and R(t) as found from the fitting procedure. The shear
band length is compared to the length as estimated by comparing the
fringe patterns to the theoretical fringe pattern. I zý 2 inches.

in Figure 9 along with the stress-strain behavior of the material in the shear
band. When necessary the equivalent shear stress is plotted using the Von
Mises criterion. Good agreement is found between the measured shear stress
for the shear band emanating from a pre-crack tip and the measured shear
stress for a shear band formed in uniaxial dynamic compression. Note that
in the high strain rate tests using the Kolsky bar, shear bands formed in
the specimen resulting in evidence of softening in the measured stress-strain
response.

4. Conclusions
For nominally strain-rate independent solids like 2024 aluminum, the

dependence of 3l upon strain at high strain-rate (1000-3000 s-1) roughly
follows the dependence expected at low strain-rates. However, strain-rate
sensitive Ti-6AI-4V titanium exhibited interesting behavior at high strain-rates.
The measured dependence of ý upon strain for this material did not follow
the qualitative trends observed in strain-rate insensitive 2024 aluminum. This
difference may be connected to the strain-rate sensitivity of the material and
twinning at high strain-rate. Further investigation is required.

The formation of a shear band at the tip of a pre-crack loaded dynam-
ically in mode-II has been recorded using high-speed photography and the
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FIGURE 9 The constitutive behavior of C-300 at various strain rates as measured
in compression. High strain rate data was measured using a Kolsky bar
apparatus. The data plotted for an observed shear band at a crack tip is
seen to agree well with the Kolsky bar experiments.

method of CGS is used to examine the stress field around the pre-crack tip.
A fit of the digitized experimental fringe field is made to the Dugdale crack
solution with the shear stress on the shear band as a variable parameter.
The stress intensity factor is assumed to follow the model of Lee and Freund
(1990). The results of the fits are used to extract the time evolution of the
shear stress on the shear band and the length of the shear band with the
following results:

It is seen that the shear band initiates within the regime of the Lee and
Freund (1990) solution for this problem. However, it does not initiate at the
first loading of the pre-notch tip. There is a time delay of approximately 11
ps before shear band growth is observed. The shear band initiates when
Kd, 140MPav'-•.

The shear band propagates into the material with a speed of roughly 320
m/s while at the same time the shear stress on the shear band decreases
from 1.6 GPa at initiation to 1.3 Gpa. The arrest of the shear band is not
recorded.

The stress-strain relationship for the shear band material is estimated,
and it agrees well with the Kolsky bar test of the same material. Softening is
observed in the material as plastic work increases.
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ABSTRACT

Various experimental procedures for measurement of quasi-static
constitutive parameters for finite strain elastoplasticity are discussed in
relation to counterpart finite element analyses of specimen deformation.
It is concluded that the usefulness of such analyses is limited by the
assumptions made in the formulations of current computer codes.

INTRODUCTION

There remain significant difficulties in the measurement of
elastoplastic parameters for use in analysis of finite straining of relatively
ductile materials. Ideally, one would prefer use of tests in which a single
stress component (at a time) could be varied as a function of an
associated strain component, during which measurements of applied
loads and corresponding deformations could be made on a test section
of reasonable size and in which a state of homogeneous stress exists.
However, conventional uniaxial tests have shortcomings which limit their
usefulness. Tension tests are limited to relatively modest strains by the
inception of necking. Compression testing involves overcoming friction
problems on end surfaces in order to obtain uniform axial stresses on
these surfaces and avoid "barreling" (or interrupted testing of
re-machined specimens). The torsion test is attractive in that shearing
strains of 600% and greater have been reported for thin-walled tube
specimens, but also presents experimental and interpretational problems
which will be discussed.
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It may be recalled that Poynting [1] studied finite torsion of wires
while Swift [2] performed tests on solid and hollow rods. Both reported
an elongation of their specimens under finite twisting. Subsequently,
Lindholm and Johnson et al. [3,4] employed a torsion specimen of the
form shown in Figure 1, in particular for determination of material
parameters for use with the Johnson-Cook [5] constitutive model. White
[6] recently published a report in which the limitations on use of
elementary analysis for interpretation of torsion test results were
assessed by comparison with finite element calculations. It was found
necessary to apply a correction factor to the rotation of the grips to allow
for the deformation which occurs in the shoulder section of the
Lindholm-type specimen. Unfortunately, this factor is a function of the
specimen geometry and the flow stress function. Also, finite element
calculations have revealed a tendency for tubes to decrease in diameter
as the twist increases. When this is inhibited by the massive shoulder
regions of the Lindholm specimen, longitudinal bending develops.
Another concern with torsion testing of thin-walled tubes is the possibility
of torsional buckling. To mitigate these problems, the gauge length of
the Lindholm specimen is made quite short, making accurate optical
measurements of strains almost impossible. Perhaps a more serious
drawback is that there is essentially no portion of the gauge section
which is in a homogeneous stress state.

Specimen Length

Shoulder Inside
Diameter Diameter

Gauge
Length Outside

Shoulder Diameter

Angle

Figure 1. Geometry of the thin-walled torsion specimen.

In an effort to circumvent at least some of the problems cited above,
the author has studied designs of torsion specimens in which a longer
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gauge section can be employed, but which would have to be
thick-walled or even solid in order to avoid buckling. There is a severe
penalty associated with this approach. Whereas for the thin-walled tube
a mean shearing stress can be related to the applied torque by
equilibrium considerations, it now becomes necessary to calculate the
elastoplastic variation of stresses with the radius, and this requires
selection of a specific plasticity model. It was decided to perform the
necessary calculations using rate-independent isothermal
elastoplasticity, the von Mises yield function, and the associated flow
rule.

The widely employed Lagrangian hydrocode DYNA3D [7] provides
these features in several of its material models. In particular, Model 10
accepts input of discrete data pairs representing points on an effective
stress vs. effective plastic strain curve and interpolates for intermediate
values as needed. This model originally only provided for isotropic work
hardening but the author has modified it to feature mixed
isotropic/kinematic hardening as suggested by Hodge [8]. Also, the
DYNA3D code has been altered to offer a choice between use of the
Jaumann [9] stress rate or the Green-Naghdi [10,11] rate (polar
decomposition of the deformation gradient). In the following, this code
is employed to treat several boundary value problems pertaining to the
torsion of hollow tubes and solid rods.

HOLLOW CYLINDERS

Consider the problem of a moderately thick ring composed of "brick"
elements: 5 elements in the radial direction, 72 in the circumferential
direction, and 1 in the axial direction (see Figure 2). The undeformed
inner and outer radii of the ring are 0.315 in and 0.465 in, respectively,
and the axial dimension is 0.030 in. The radial dimensions of each
element are initially equal. The material data to be employed in Model
10 were derived from the quasi-static tests on annealed OFHC copper
reported by Weerasooriya and Swanson [12], sixteen points on the
effective stress vs. effective plastic strain curve being used as input.
The density was taken to be 0.000837 lb sec/in 4. The nodes are
constrained to not move in the axial direction, but are free to move
radially. The two z = constant faces rotate in contrary directions at
1 radian/sec and are given appropriate initial velocities to avoid a
starting transient. Clearly, the solution of this idealized problem also
applies to an infinitely long cylinder made of many such rings all
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subjected to the same loading. It also applies to the central portion ofa finite fixed-ended cylinder sufficiently removed from the ends wheretorques are applied that a homogeneous state of stress exists. Exceptwhen it is desired to analyze the possibility of torsional buckling of thecylinder, it is possible to focus on the stresses and deformation of asingle "wedge" of five radial elements, since all such wedges have thesame deformation history (see Figure 3). Since the DYNA3D code does

Figure 2. Ring-torsion problem gridding.

Figure 3. Wedge of five radial elements.
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not have input options suitable for modeling the wedge problem, a
special subroutine, T5RFIX, was introduced to apply the appropriate
nodal constraints to duplicate the results of the ring calculations.
Consequently, the rather voluminous results for the ring problem will not
be shown, but were used to check the validity of the wedge constraints.

WEDGE PROBLEMS

A matrix of fixed-ended wedge problems was then studied for the
possible combinations of isotropic and kinematic hardening and the
Jaumann and Green-Naghdi stress rates, all run to a final torsional
shear strain of Czo = 2.0 (tensor component). In the course of a
convergence study it was found that the major stress Yze is insensitive
to the size of the wedge angle, but that computed values of the
circumferential stresses a., in the five elements were inconsistent with
the requirement that the hoop force on any radial section should be zero
in a statics problem. This cast doubt on the validity of all predicted
normal stresses induced by the torsional loading. The difficulty appears
to be associated with the brick element employed by DYNA3D. This
element uses a single integration point located at its center; when the
element experiences large shearing and warping, the stresses computed
at the integration point are inappropriate for evaluating nodal forces
since the actual stresses in the neighborhood of the nodes would vary
significantly from those at the center of the element. This difficulty can
be somewhat alleviated by reducing the thickness of the elements in the
z-direction (which reduces the amount of circumferential stretch required
to reach the desired shearing strain). Some effort was made to optimize
the element thickness to minimize the hoop force, and the results which
follow are based on this concept.

Results from DYNA3D calculations for the fixed-ended wedge using
the Jaumann stress rate for both isotropic and kinematic hardening are
shown in Figure 4 for the middle element of the wedge. The isotropic
hardening curve for the shearing stress is in good agreement with
experimental data [12] and the induced normal stresses, while not zero,
are too small to be visible with the scale employed. For the pure
kinematic hardening case, the shear stress exhibits the widely noted
sinusoidal behavior associated with the Jaumann rate, as do the induced
normal stresses. The magnitudes of the latter stresses are
unrealistically large, and these stresses would significantly affect the
effective stress function if actually present. The experimental curve for
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the induced axial stress is also shown in this figure. Calculations for a
free-ended wedge were also made using the Jaumann stress rate for
the isotropic case; the results were indistinguishable from the isotropic
curves shown in Figure 4. Of course, there was an axial extension of
the wedge, and the magnitudes of the axial stresses were further
reduced.

3o0000 /
300 - Torsional- Shear Stress

/

20000 Isotropic Hardening

10000
Circumferential Stress

oe
0p

Experimental Axial Stress

-10000 Axial Stress

-20000
0 0.5 1.0 1.5 2.0

Figure 4. Stresses computed using the Jaumann stress rate.

Calculations similar to those described above were also performed
using the Green-Naghdi stress rate, and the results for a fixed-ended
wedge are shown in Figure 5. For the isotropic case, the curves shown
in this figure are essentially the same as those obtained using the
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Jaumann rate. In the kinematic hardening case the early oscillatory
behavior was avoided, but the magnitudes of the induced normal
stresses are still large.

S ,, . . .J l. . . , I I I I I I I I I I I I

30 - Torsional Shear Stress

30000 / Isotropic Hardening

20000

10000

"••Circumferential Stress

C.

0

-10000
/0Axial Stress

-20000' I --- ,z --q-
0 0.5 1.0 1.5 2.0

Figure 5. Stresses computed using the Green-Naghdi stress rate.

SOLID SPECIMENS

In anticipation that torsional buckling of hollow cylindrical specimens
might preclude successful material characterization tests at large shear
strains, a study of the feasibility of using DYNA3D calculations for test
data interpretations (up to incipient buckling) was conducted. Again, it
is not necessary to model the entire cross section but only a

615



"pie-shaped" wedge with appropriate constraints. To accomplish this,
the DYNA3D code was modified to include subroutines TWED and
TWED2 which apply to the geometry indicated in Figure 6.

Symmetry Plane

\Axis Of Symmetry

Figure 6. Geometry for the solid wedge calculations.

A series of calculations were performed in which the nodes on the
outer surface in the "grip" region were inhibited from moving in the axial
direction and constrained to rotate about the Z-axis at specified angular
velocities. The results of these calculations are too complex to report
in this paper. However, it is worth noting certain new phenomena which
arise in these calculations.

One of these is what may be termed isothermal shear banding,
which entails a spontaneous rapid increase in plastic strain in an
element or in all the elements at some axial location. This phenomenon
is unrelated to thermal softening of materials since the mathematical
model has no provision for thermal effects. Although this behavior is
observed to a very limited extent during calculations using isotropic
hardening, it has a serious destabilizing effect when kinematic hardening
is employed. This banding is triggered in the most critically loaded
element when the sinusoidally varying shear stress decreases from its
first peak. Figure 7 shows end views of the twisting wedge before and
after the appearance of the first band. Unlike adiabatic shear bands
which progress to extreme localization, these isothermal bands tend to
broaden as the banding spreads to adjacent elements.
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Shear Band

\z

Initial Position

"= 0.013 .t = 0.015

Figure 7. End views of wedge before and after shear banding.

Another phenomenon occurred during a mixed isotropic/kinematic
calculation using the Green-Naghdi stress rate (made to assess the
Bauschinger effect) in which the "grip" end was programmed to twist
through 2800 and then twist back to 1200. During the latter part of the
reversed loading, the wedge was observed to buckle (computationally,
but this may also occur in a physical experiment).

CONCLUDING REMARKS

It is the uncertainties regarding modeling plastic flow, work
hardening, evolution of anisotropy, and objective stress rates which
impede successful finite element modeling of experimental specimen
configurations and motivate experimentalists to adopt simple shapes
such as the thin-walled tube for which stress can be related to strain
through equilibrium and geometric considerations.

The feasibility of modeling the torsion of hollow cylinder and solid rod
specimens has been demonstrated in this paper, but the results are
conditioned by material modeling decisions. In view of this, the writer
does not feel that the tedious and expensive calculations required for a
converged solution for the solid rod can be justified. Further study of
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modeling the hollow tube using various material representations and
alternate finite elements may be worthwhile.

Where it is desired to use the thin-walled tube specimen, the
configuration shown in Figure 8 may be considered. This configuration,
which is very similar to that employed by Professor Swift [2], consists of
a straight cylindrical tube with snugly fitted plugs of a high modulus
material inserted in each end. The grips of a torsion tester would be
applied in the region of the plugs. The gauge section of the tube must
be relatively short to inhibit torsional buckling. Swift attempted to resist
buckling by introducing a small clearance solid rod into the gauge
section as part of one of the end plugs, but had problems with binding
between the rod and specimen. It would appear preferable to introduce
a "free floating" solid rod and use today's super lubricants. Another
method for delaying the onset of buckling would be to apply a uniform
axial tension to the test specimen.

Specimen

Plug Plug

Figure 8. Suggested torsion test configuration.

It should be remarked that elastoplastic parameters obtained by
finite shearing or compression tests may no longer pertain to an
isotropic material. It would be extremely valuable to be able to map the
current yield surface to assess induced anisotropy, preferably in the
same experimental apparatus.

ACKNOWLEDGEMENT

The author wishes to express his appreciation for many stimulating
discussions with Dr. Joseph M. Santiago during the course of this
investigation.

618



REFERENCES

1. Poynting, J. H., "On Pressure Perpendicular to the Shear Planes in
Finite Pure Shears, and on the Lengthening of Loaded Wires
when Twisted." Proceedings of the Royal Society of London,
vol. A82, pp. 546-559, 1909.

2. Swift, H. W., "Length Changes in Materials under Torsional
Overstrain." Engineering, vol. 163, pp. 253-257, 1947.

3. Lindholm, U. S., Nagy, A., Johnson, G. R., and Hoegfeldt, J. M.,
"Large Strain, High Strain Rate Testing of Copper." ASME
Journal of Engineering Materials and Technology, pp. 376-381,
1980.

4. Johnson, G. R., Hoegfeldt, J. M., Lindholm, U. S., and Nagy, A.,
"Response of Various Metals to Large Torsional Strains Over
a Large Range of Strain Rates-Part 1: Ductile Metals." ASME
Journal of Engineering Materials and Technology, pp. 42-53,
1983.

5. Johnson, G. R., and Cook, W. H., "A Constitutive Model and Data
for Metals Subjected to Large Strains, High Strain Rates and
High Temperatures." Seventh International Symposium on
Ballistics, The Hague, April 1983.

6. White, C. S., "Use of the Thin-Walled Torsion Specimen." U.S.
Army Materials Technology Laboratory, TR 92-49, 1992.

7. Hallquist, J. 0., "Theoretical Manual for DYNA3D," University of
California, Lawrence Livermore National Laboratory, Rept.
UCID-19401, 1983.

8. Hodge, Jr., P. G., Discussion of Prager (1956), Journal of Applied
Mechanics, vol. 24, no. 3, pp. 482-483, 1957.

9. Jaumann, G., "Grundlagen der Bewegungslehre," Leipzig, 1905.
10. Green, A. E., and Naghdi, P. M., "A General Theory of an

Elastic-Plastic Continuum," Arch. Rat. Mech. Anal., vol. 18,
pp. 251-281, 1965.

11. Green, A. E., and Mclnnis, B. C., "Generalized Hypo-Elasticity,"
Proceedings of the Royal Society of Edinburgh, A57, p. 220,
1967.

12. Weerasooriya, T., and Swanson, R. A., "Experimental Evaluation of
the Taylor-Type Polycrystal Model for the Finite Deformation of
an FCC Metal (OFHC Copper)." U. S. Army Materials
Technology Laboratory, TR 91-20, 1991.

619



High Strain Rate Behavior and Localization in Hafnium

Dr. Ghatuparthi Subhash*
Assistant Professor

Department of Mechanical Engineering-Engineering Mechanics
Michigan Technological University

Houghton, Michigan 49931

and

Dr. Guruswami Ravichandran
Assistant Professor

Graduate Aeronautical Laboratories
California Institute of Technology

Pasadena, California 91125

Constitutive behavior of polycpstalline hafnium is investigated at
various strain rates in the range 10 -10"4/s in uniaxial compression. It is
found that hafnium exhibits shear banding at all the strain rates
employed in this study. The inelastic stress-strain response reveals a
three stage hardening which is typical of several h.c.p. metals. As the
strain accumulates, the slope of the hardening regime gradually falls to
zero and the material experiences instability. The instability leads to
localization and failure along a plane at 450 to the compression axis.
Multiple shear bands were observed when the thickness of the speci-
men was small. SEM observations of the fractured surfaces revealed
extensive void formation, growth and coalescence along the shear
bands. Temperature measurements using high speed infrared detectors
revealed a rise of 320 0C for a strain of 0.42 on cylindrical specimens
tested at high strain rate under uniaxial compression.

Introduction

Hafnium (Hf) is a refractory metal with hexagonal close packed
structure (h.c.p.). It has many desirable engineering properties like high
density, good ductility and excellent resistance to corrosion, irradiation
and mechanical damage. It has been used in nuclear reactors as a con-
trol material due to its high capture cross-sectional area for thermal

621



neutrons. Hf is also widely used as a solid solution strengthener. Addi-
tion of 10% hafnium to columbium (Niobium) increases its hot strength,
weldability and formability. The columbium alloys, C-103 (Cb-10Hf-1Ti)
and C-129Y (Cb-10W-10Hf-0.07Y) have wide applications in jet
engines and missile systems. Inspite of its many potential engineering
applications, little is known about its mechanical response, plastic
behavior, and its ability to undergo localized shear deformation. Experi-
ments were done on commercially available pure hafnium to investigate
its plastic response at various strain-rates under uniaxial compression.

Recently there have been a number of studies on the plastic defor-
mation of h.c.p metals, particularly on computer simulations of various
twin, dislocation and vacancy properties and their interactions using
atomic potentials (Vitek and Igarashi (1991), Serra and Bacon (1991),
Serra et aL, (1991), Johnson (1991) and De Diego and Bacon(1991)).
Simulations are extremely important to characterize and understand the
atomic configurations. Some early experimental studies on mecha-
nisms of plastic flow on Ti at low and high temperature were reported by
Rosi et aL(1953, 1956), Rosi (1954), Levine (1966), De Crecy et aL
(1983) and recently, by Naka et aL (1991), Meyers etaaL (1993) and on
zirconium by Rapperport and Hartley (1960), Akhtar and Teghtsoonian
(1971) and Numakura (1991). These studies focussed on identifying
the dominant mechanisms which govern the low and/or high tempera-
ture plasticity. Other mechanisms of plastic deformation like prismatic
glide and interaction of point defects with dislocations and grain bound-
aries in h.c.p. metals were studied by Couret et aL (1991) and Monti et
al (1991). Importance of deformation twinning in h.c.p. metals and
alloys was well described by Yoo (1981) and by Yoo and Lee (1991).
Stress-state dependence of slip in Ti-6AI-4V and other h.c.p. metals is
investigated by Jones and Hutchinson (1981). Analysis of low tempera-
ture, low and high strain rate deformation of Ti-6AI-4V was investigated
by Follansbee and gray (1989). It is obvious from the above studies that
majority of the work is focussed on computer simulation of the deforma-
tion mechanisms in h.c.p. structures. Experimental investigations into
their mechanical behavior under various loading conditions can yield
valuable information in enhancing our understanding of the plastic
behavior and kinetics of deformation. Lack of experimental data can
hinder the progress in theoretical modelling of constitutive behavior and
the efforts in understanding the micromechanisms of dislocation inter-
actions using the above computer simulations. Such data is abundantly
available for f.c.c. metals but is very limited for h.c.p. metals, and espe-
cially for hafnium. Our extensive literature search has yielded two early
references on this subject. One on the microstructure of hafnium by
Vahldiek (1969) and the other on mechanical properties of hafnium sin-
gle crystals by Das and Mitchell (1973). Recent advances in processing
technology has made it possible to obtain ultra pure metals with excep-
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tional mechanical properties. In light of these advances and also due to
the necessity of more experimental data to understand the fundamental
mechanisms of plastic deformation, and associated microstructural
changes in hafnium, the present study is undertaken.

The objective of this study to investigate the constitutive behavior
of hafnium under uniaxial compression and its ability to form shear
bands at various strain rates. The study is also aimed at identifying the
deformation and failure modes, the active slip and twin systems and the
dominant dislocation mechanisms that contribute to the observed over-
all behavior. Temperature rise during the dynamic deformation is also
investigated using high speed infrared detectors. The effect of tempera-
ture rise on the over all plastic behavior and the resulting dislocation
substructure is also under investigation.

Experimental

I. Materials
Commercially available pure hafnium is obtained from Teledyne

Wah Chang, Huntsville, Alabama, in the form of a rod. Chemical analy-
sis for gaseous and metallic impurities was performed at Teledyne Wah
Chang Analytical Laboratories, Albany, Oregon. The results of the anal-
ysis are given below.

Table 1: Gaseous Impurities

Element C H N 0

ppm 30 <3 34 270

Table 2: Metallic Impurities

Element Al Cr Cu Fe Mg Mo

ppm 29 <20 195 215 <10 <10

Element Nb Ta Ti U W Zr

ppm <50 <100 25 <1 <20 2.05%

The effect of impurities on the mechanical behavior of hafnium and sev-
eral other h.c.p. metals has been given considerable attention in the lit-
erature. It is known that Hf is extremely reactive. It is also well
established that, in h.c.p. metals with less than ideal c/a ratio (Hf, T1 and
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Zr), prismatic slip is preferred and this is found to be more strongly
affected by impurities as compared to basal slip. Levine (1966) found
that the yield stress is strongly affected by oxygen impurities in Ti, espe-
cially at lowtemperatures. Interstitial impurities also have strong hard-
ening effect. When oxygen impurity is beyond 1500 ppm, it hardens 1T
through chemical interaction with screw dislocations (Naka et aL, 1991).

I1. Procedure
Polycrystalline specimens were cut from the rod into cylindrical

shapes in sizes of 5mm length x 5mm diameter and into 2mm length x
4mm diameter. These sizes were chosen due to the limited amount of
available material. The specimens were subjected to various strain
rates at room temperature. Low strain rate experiments (105-3.2 s1)
were performed ?n a MTS servohydraulic machine and high strain rate
experiments (10 -104 s1 ) were performed on a split Hopkinson pres-
sure bar (SHPB).

Results and Discussion

The complete summary of the experimental results are presented
in Table 3. The stress-strain response of specimens tested at quasi
static and dynamic strain rates is given in Fig. 1. It can be seen that the
compressive response of hafnium can be divided into three regimes.
There is an initial flat (perfectly plastic) response followed by a harden-
ing regime. The slope of this curve gradually decreases and falls to
zero. At this stage, the load carrying capacity of the specimen falls to
zero and the specimen fails along a plane at 450 to the compression
axis. This effect is seen as a load drop in the stress-strain response. It
is interesting to note from the stress-strain response of hafnium that
there is no strain rate dependence of yield stress in this material. It has
been well established that h.c.p. materials, especially Ti and Zr (with c/a
ratio less than ideal) are extremely strain rate sensitive (Meyers et aL
(1993)). It is not clear at this stage why hafnium behaves differently.
Das and Mitchell (1973) have observed temperature dependency of
yield stress in single crystal hafnium and they attributed this behavior to
impurity contents like oxygen and nitrogen. Goodwin and Trout (1966)
also observed that substitutional impurities like Cd and Zr (beyond 2%)
and interstitial impurities like oxygen (beyond 300 ppm) significantly
affect the mechanical behavior. In the present case, it is speculated that
the low strain rate sensitivity of hafnium could be due to the high purity
of the material.

Irrespective of the strain rate of the test, all the specimens exhib-
ited shear failure (after accumulating certain strain) along a plane
approximately 450 to the compression axis. The critical strain for shear
failure was around 0.3 - 0.35. When loading rates were very low, it was
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possible to stop the test at the onset of shear localization (see Hf-03 in
Table 3). The number of shear bands formed in each specimen varied
from 1-4 depending on the thickness of the specimen, strain and the
strain rate. Multiple shear bands were observed in thin specimens. The
micrographs in Fig. 2 reveal the shear bands formed in the specimens
Hf-N3 and Hf-04 and failure along these bands during the experiment.

Table 3: Summary of Experimental Results

Specimen Dimension Strain Rate (s-1) No. of Shear
No L x D (mm2) Bands

Hf-N1 5 x 5 0.004 None

Hf-N2 5 x 5 0.00009 None

Hf-N3 5 x 5 1.4 1

Hf-N4 5 x 5 0.001 1

Hf-O1 2 x 4 0.013 2

Hf-02 2 x 4 3.2 3

Hf-03 4.1 x 6.3 0.00025 1 (Initiated)

Hf-N5 5 x 5 1500 None

Hf-N6 5 x 5 2700 1 (Fractured)

Hf-N8 5 x 5 5200 1

Hf-04 2 x 4 4000 3

Hf-O5 2 x 4 2800 Spec. Lost

Hf-06 2 x 4 10000 4

Microscopic Observations

At high strain rates, the specimens fractured along the shear band
in to two pieces. The fractured surfaces were observed under a scan-
ning electron microscope. Figure 3 reveals the microstructure of the
fracture surface of the specimen Hf-N6. The microstructure consists of
number of elongated voids along the direction of shear failure. It is clear
from the micrograph that the failure occurs by generation of voids, their
growth and coalescence. But whether the voids initiate the shear band
or the shear band (or the localization) initiates the voids which then
grow to cause failure is under investigation.
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b !

Fig. 2. Photographs of deformed and fractured specimens (a) Hf-N3

and (b) Hf-04. The marker is 5 mm long.
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Fig. 3. SEM micrograph of fractured surface revealing elongated voids
in the plane of shear failure.
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Temperature Measurements

During dynamic testing, there is considerable rise in temperature
of the specimen due to adiabatic nature of the deformation. This rapid
rise in temperature significantly affects the flow and fracture behavior of
metals and the resulting dislocation substructure. Hence it is very
important to measure the temperature rise during the deformation and
assess its influence on the deformation behavior of the metal. To mea-
sure the temperature rise in the specimen during the deformation in the
SHPB, high speed infrared detectors are focussed on to the specimen
and the voltage signal obtained from the detectors is recorded along
with the transmitted anu reflected signals in the SHPB. The technique
of measuring temperature rise using infrared detectors has been suc-
cessfully used to measure the rise in temperature at the tip of a dynam-
ically propagating crack (Zhender and Rosakis, 1991). Typical voltage
signals obtained during the high strain rate testing of specimens Hf-N8
and Hf-N6 are shown in Fig. 4. In Fig. 4(a) the detectors were focussed
on to a small region on the specimen and the shear band did form with
in this area and hence the signal obtained shows a uniform rise in tem-
perature in that region during the test. When the focussed area is close
to the region where the shear band propagates, then there is a rapid
rise in the temperature in that region and the signal obtained from the
detectors is as shown in Fig. 4(b). The rapid rise is due to the high tem-
perature associated with the intense localized shear deformation and
associated fracture in the band. Due to the movement of the incident
bar in SHPB, the specimen also moves forward during the deformation
and hence the area under focus also changes. Now the focussed
region on the specimen has shifted away on to a region which is under
a homogeneous deformation and this area obviously has a lower rise in
temperature as compared to the shear band and hence there is a fall in
voltage signal obtained from the detectors. The temperature rise corre-
sponding to the signal in Fig. 4(a) is around 320 0C for a strain of 0.42
and the maximum temperature in the Fig. 4(b) is approximately 560 °C.
The effect of this temperature rise can be seen in the resulting disloca-
tion substructure in the material. A systematic study of the deformed
specimens using transmission electron microscopy is under progress to
evaluate these effects.

Conclusions

The experiments on polycrystalline hafnium show high propensity
for shear banding under a range of strain rates. Extensive void genera-
tion, growth and coalescence lead to fracture along the shear bands.
There is a significant temperature rise in the material during the defor-
mation, especially with in the shear bands. Microscopic studies are
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under progress at this time to identify the various slip, twin and disloca-
tion mechanisms that are responsible for the observed constitutive
behavior. These results will be reported in future publications.
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Background

As a high velocity long rod projectile burrows a
cavity in armor, its high density penetrator core is
also inverted and eroded. Due to the relatively slow
propagation rates of plastic strains, the deformation
to both penetrator and armor materials is localized to
regions on either side of the penetrator-target
interface. Both materials therefore undergo the large
plastic strains at extremely high strain rates,
estimated to exceed 10A6 per second, (WRIGHT, [1982]).

These deformations also occur under conditions of
high hydrostatic pressure generated by the inertia of
each material and the confinement of the surrounding
volume of armor material that is resisting the
expansion of the penetration cavity. The pressures
can exceed 5 GPa (MESCALL, [1983]) on either side of
the moving penetrator-target interface (see Fig. 1).
The hydrostatic pressures act to suppress fracture
failures in these immediate regions. For example,
even nominally brittle penetrator materials such as
polycrystalline tungsten will be back-extruded from
the interface in a ductile manner (GERLACH, [1986]).

The high rates at which these deformations occur
allow little time for the dissipation of the heat
generated by plastic work. Thermo-mechanical
instabilities and subsequent plastic localizations
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Figure 1. Hydrostatic Pressure Contours Surrounding
the Penetrator-Target Interface, from Mescall, (1983).
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Figure 2. Behaviors of High Density Materials During
Penetration, (a) U-3/4Ti, (b) Conventional WHA.
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(adiabatic shear bands) often develop in both armor
and penetrator materials. How quickly (at what
critical value of plastic strain) this occurs is
determined by a balance between the thermal softening
of the material, a function of its heat capacity,
softening rate with temperature, etc., and the
strengthening of the material with the strain and
strain rate (ROGERS, [1979]). Differences in the
dynamic flow-softening and subsequent adiabatic shear
susceptibility of tungsten heavy alloys (WHA) and
depleted uranium (DU) alloys are responsible for their
differing performances as penetrator materials
(MAGNESS and FARRAND, [1990]). Uranium alloy
penetrators quickly develop adiabatic shear failures
during penetration and rapidly discard the back-
extruded material from the head of the projectile
(Fig. 2a). In WHA penetrators, the shear
localizations develop only after extensive plastic
deformation, resulting in the build up of a large
mushroomed head on the projectile (Fig. 2b). As a
result, the WHA projectiles must displace larger
diameter penetration cavities in the armor and cannot
achieve penetration depths as great as those achieved
by equivalent uranium penetrators.

Several efforts to improve the ballistic
performance of WHA, by promoting a similar
thermomechanical instability and localization behavior
in novel tungsten-based composites, are now under way.
A primary approach being explored in these efforts is
the replacement of the nickel-based matrix of
conventional WHA materials with a matrix composition
that is thermomechanically less stable (for example,
a titanium alloy). An instrumented dynamic test,
whose output can be correlated to the ballistic
behavior and performance relationship described above,
would aid both fundamental understanding, and serve as
a screening methodology for candidate matrix materials
and the overall tungsten-matrix composites.

Selection of a Split Hopkinson Bar Compression Test

Ideally, the loading environment in the
instrumented test should resemble that seen by the
penetrator material during the penetration process.
Of particular concern is the ability to distinquish
between shear fractures and adiabatic shear
localizations. This issue is illustrated in the
results of dynamic tubular torsion tests by JOHNSON et
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al. (1983), comparing a 90% tungsten-7% nickel-3% iron
composite and the U-3/4Ti alloy used in large caliber
U.S. tank ammunition. The shear strains at which
maximum stress levels were recorded, and at which
shear failures occurred, were lower for the WHA
composite than for the U-3/4Ti alloy. This is an
apparent reversal of the ballistic observations and
likely is due to the torsion test's lack of high
superimposed hydrostatic pressures. The lack of
hydrostatic pressure allows the operation of other
strain-softening mechanisms (COWIE and TULER, [1987]),
particularly microcracking and void nucleation and
growth mechanisms important in composite materials.
These mechanisms are suppressed during the inversion
of the material at a penetrator's head. (As an aside,
this also suggests that the eventual appearance of the
shear localizations in the mushroomed head of a WHA
penetrator may be as much a function of its position
in the pressure field drawn in Figure 1, as it is of
the achievement of some critical strain value.)

The relatively simple, split Hopkinson bar (SHB)
compression test deforms specimens at strain rates of
10A3 to 10V4 per second. Although the rates of
deformation are still a couple of orders of magnitude
lower than those in ballistic events, the loading of
the specimens more closely simulate that seen at the
head of the penetrator than that found in pure or
simple shear tests.

A sudden drop in the load-displacement or force-
time records is often observed in these dynamic
compression tests and is associated with the
development of an adiabtic shear failure (CIMPOERU and
WOODWARD, [1990]). The strain-to-load-drop (STLD)
measure may provide an easily recordable
quantification of adiabatic shear susceptibility. Its
value in a particular test, however, is a function of
the geometry of the compression specimens (length-to-
diameter [L/D] ratio) and the friction between the
anvils and the ends of the specimen, as well as the
fundamental dynamic flow-softening behavior of the
material (O'DONNELL and WOODWARD, [1988]). In tests
of conventional WHAs (BELK et al., [1992]),
catastrophic load drops did not occur for both L/D =
0.5 and 1.0 specimens, but did appear at true strains
exceeding 60% in L/D = 2 specimens. The shear
localizations can be "forced" in WHA materials at
still lower strain values, if the specimen ends are
left unlubricated (BOSE et al., [1992]). Reflecting
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a true difference in dynamic flow-softening response,
tests of uranium alloy, using L/D = 0.5 specimens with
lubricated ends, have exhibited load drops at moderate
true strains (SEMIATIN et al., [1982]).

For this evaluation of the dynamic compression
test, well-lubricated L/D = 0.5 specimens were used.
The specimens were 0.250 inches in diameter by 0.125
inches in height, and the ends of the specimens were
grooved and lubricated with Molylube to minimize
friction at the anvil surfaces (Fig.3). The test set-
up was a conventional SHB, with strain gages on the
elastic input and output bars on either side of the
specimen.

"DIA0.1 
000 12"

L"ot

GROVE SPACING

Figure 3. Geometry of Split Hopkinson Bar Compression
Specimens.

To examine a possible correlation between the
dynamic compression test results and penetration
performance, a selection of penetrator materials with
demonstrated differences in ballistic performance was
required. To date, the basic penetration performance
of conventional (nickel-base matrix) WHA penetrator
materials has been quite insensitive to changes in
properties and has been shown to be a function of
alloy density only (MEYER et al., [1990]). This is
not the case for uranium alloys. The ballistic
performances of equidensity uranium alloys can vary
significantly (MAGNESS and FARRAND, [1990]). Nine DU
alloys, of differing chemistries, crystallographic
structures, processing histories and properties were
selected for the series of SHB tests (Table 1).
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Table 1. Chemistry and Properties of Selected Uranium
Alloys.

Tensile Properties Compressive
Alloy Density Elong. Y.S.(0.2%) U.T.S. Y.S.(0.2%)

(g/cc) (%) (MPa) (MPa) (MPa)
U-6Nb 17.3 30 600 896 ---

(metastable monoclinic structure)
U-8Mo 17.2 17 936 938 910

(body-centered cubic structure)
U-lMo-3/4Ti 18.4 7 1396 1821 1572

(orthorhombic, gamma-quenched and aged, Rc 49)
U-3/4Ti 18.6 20 848 1489 952

(ortho., gamma-quenched & aged, Rc 40)
U-3/4Ti 18.6 6 1089 1689 1389

(ortho., gamma-quenched &>aged, Rc 49)
U-3/4Ti 18.6 8 1276 1593 862

(ortho., gamma-quenched, swaged 28%)
U-3/4Ti 18.6 6 1351 1717 965

(ortho., gamma-quenched, swaged 28%, aged)
U-3/4Ti 18.6 24 676 1241 1434

(ortho., gamma-quenched, upset 12%)
U-3/4Ti 18.6 15 945 1338 1441

(ortho., gamma-quenched, upset 12% & aged)

Seven of the alloys have the orthorhombic crystal
structure, martensitic microstructure of the standard
U-3/4Ti alloy used in U.S. tank munitions. The U-6Nb
alloy has a metastable monoclinic structure (WOOD et
al., [1983]). The high temperature phase (body-
centered cubic structure) of uranium was stabilized at
room temperature by an 8% molybdenum addition for the
ninth alloy. The ballistic performances, measured as
limit velocities of constant mass, fixed geometry (65
g, L/D of 15) penetrators, against a fixed, finite
thickness armor steel plate, are ranked in Table 2.
Since the densities of three of the alloys were lower
than the 18.6 g/cc of the U-3/4Ti alloys, the
ballistic performances of all the alloys were
normalized by the limit velocities obtained for equal-
density WHA penetrators, thus separating the effects
of alloy density and material response. Note that
only one alloy, U-6 Niobium(Nb), performed as poorly
as an equal-density WHA, (V/Vwha = 1.0). This was
also the only uranium alloy that did not exhibit
extensive adiabatic shear failures during the
penetration process.
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Results of Split Hopkinson Bar Tests

Most of the tests were conducted at a strain rate
of approximately 1500/sec. In most of the tests,
thermal softening was apparent in the calculated true
stress - true strain curves (Fig. 4 and 5). In all
the SHB tests, save those done with the U-6Nb alloy
(Fig. 5), a sudden load drop was observed (Fig. 4).
The true strain values at which these drops occurred,
listed in Table 2, ranged from 14% to 42%, and were
quite reproducible for each of the materials tested.

Table 2. SHB and Ballistic Test Results
Tensile Compressive Aver. SHB Normalized

Alloy Elong. Y.S.(0.2%) STLD V/Vwha
(%) (MPa) (%)

U-6Nb 30 --- none 1.00
(metastable monoclinic)

U-8Mo 17 910 30 0.95
(body-centered cubic)

U-3/4Ti 20 952 28 0.93
(orthorhombic, gamma-quenched & aged)

U-3/4Ti 8 862 42 0.91
(ortho., gamma-quenched, swaged 28%)

U-3/4Ti 6 965 32 0.91
(ortho., gamma-quenched, swaged 28%, aged)

U-3/4Ti 6 1389 19 0.90
(ortho., gamma-quenched &>aged, Rc 49)

U-3/4Ti 24 1434 18 0.89
(ortho., gamma-quenched, upset 12%)

U-IMo-3/4Ti 7 1572 15 0.89
(ortho., gamma-quenched and aged, Rc 49)

U-3/4Ti 15 1441 14 0.89
(ortho., gamma-quenched, upset 12% & aged)

A greater STLD value would suggest that more
"mushrooming" of the head of the penetrator would be
required before a shear localization and discard
occurred. The resulting ballistic performance
therefore should be poorer (greater normalized limit
velocity). Consistent with this hypothesis, the three
uranium alloys exhibiting the lowest STLD values,
ranging from 14% to 18%, delivered the lowest
normalized limit velocities (V/Vwha = 0.89). The
results were more mixed for the remaining uranium
alloys exhibiting a load drop, but the general trend
of increasing limit velocity with increasing STLD is
generally consistent. Note that the U-6Nb alloy,
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Figure 4. SHB Compressive True Stress - True Strain
Curve for U-3/4Ti Alloy, Quenched and Aged, Exhibiting
Load Drop Behavior (STLD 0.28).
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which performed no better than conventional WHA and
did not exhibit any shear localizations during the
penetration process, did not exhibit a load drop, even
when deformed to strains exceeding 80%. This result
is consistent with the lack of a load drop in tests of
lubricated, low aspect ratio WHA compression
specimens.

One should also note the inverse relationship
between the compressive yield strength of the DU
alloys (listed again in Table 2) and the STLD values.
Similar relationships between strength and critical
strain to adiabatic shear failure are often observed
for steels and other metals (ROGERS, [1979]).

Optical metallographic examinations of the
specimens, which had failed via a sudden load drop,
revealed that the failures occurred in a ductile
manner (Fig. 6a). This is indicative of a plastic
localization (adiabatic shear) failure rather than
fracture. To examine earlier stages of the shear band
propagation, steel washers of the required thicknesses
were placed between the input and output bars in
subsequent tests to try to stop the compression at a
strain below the critical STLD. These specimens were
then sectioned and examined. With only one exception,
the metallographic examinations did not reveal a shear
band in the process of propagation, even in those
specimens arrested at strains just below the critical
STLD. This suggests that once a shear band initiates,
it propagates very quickly across the specimen.

The sole exception was a U-8Mo specimen, #869
(Fig. 6b), in which a shear band nearly traversed the
specimen, starting at one corner and propagating to
the opposite corner. Note that the U-8Mo shear band
does not have the classic "white-etching"
characteristic of "transformed" adiabatic shear bands
in high-strength steels or orthorhombic uranium alloys
(STELLY and DORMEVAL, [1986]). Since the U-8Mo alloy
already has the high temperature, body-centered cubic
structure of uranium at room temperature, it will not
undergo a phase transformation upon adiabatic heating
in the shear band. This may explain the lack of the
white-etching feature that is characteristic of
transformation bands. It is also interesting to note
that the shape of the dynamic true stress - true
strain curves for the U-8Mo alloy were somewhat
different from those of the orthorhombic uranium
alloys. Thermal softening was more pronounced for the
U-8Mo alloy than for the martensitic uraniums, yet the
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final load drop was more gradual. Although many
features of the U-8Mo compression tests remain
difficult to explain, the U-8Mo alloy clearly
exhibited adiabatic shear failures in both the
ballistic and SHB tests, and its superior ballistic
performance corresponded to its STLD value of 0.30.

(a) (b)

Figure 6. Adiabatic Shear Bands Observed in Sectioned
SHB Specimens, (a) White-Etching Band Found in U-3/4Ti
Samples Exhibiting Load Drop, (b) Non-White-Etching
Band Found in U-8Mo Sample. (Oxalic Acid Etch, 300X).

Conclusions

In these initial split Hopkinson bar compression
tests of DU alloys, the strain-to-load-drop (STLD)
measure appears to be a good indicator of each alloy's
relative ballistic performance. The STLD value
indicates the critical strain required for the
development of an adiabatic shear failure in the
specimen. The STLD values can also be viewed as a
measure of the amount of "mushrooming" of the head of
the penetrator required before a shear localization
and discard will develop, and thus the penetrator
material's performance. Adiabatic shear failures have
proven difficult to model in two- and three-
dimensional hydrocode simulations of the penetration
process. However, in recent simulations by Silling
(1993) using an ad hoc shear band model, a similar
relationship between strain-to-shear-failure and
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ballistic performance was demonstrated.
The usefulness of this SHB compression test as a

screening technique for novel WHA composites has yet
to be demonstrated. However, load drops have not been
observed in equivalent compression tests of
conventional WHAs, a result consistent with WHA's
poorer performance and the results (both SHB and
ballistic) for the U-6Nb alloy. Further testing using
additional uranium alloy samples and novel WHA
composites is planned.
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PO BOX 5800 AMSRL-MA-DA
ALBUQUERQUE NM 87185-5800 ARSENAL ST

WATERTOWN MA 02172-0001
(617)-961-3441
FAX: (617)-923-5065

MR ROBERT GREIF MR DAVID J GROVE
MECH ENGR ASSIS PROG/ANALYST
US DOT/VOLPE CTR UNIV OF DAYTON RES INST
DTS-76 300 COLLEGE PARK
KENDALL SQ DAYTON OH 45469-0120
CAMBRIDGE MA 02142-0001 (513)-229-4417
(617)-494-2103 FAX: (513)-229-4251
FAX: (617)-494-3066

MR JOHN W GROVE MR WILLIAM E HASKELL III
ASSOC PROF MATLS ENGR
UNIV AT STONY BROOK US ARMY MATLS TECH LAB
DEPT OF APPL MATH AMSRL-MA-PA
STONY BROOK NY 11794-3600 ARSENAL ST
(516)-632-8375 WATERTOWN MA 02172-0001
FAX: (516)-632-8490 (617)-923-5172

FAX: (617)-923-5154

DR G E HAUVER DR DAVID HOPKINS
US ARMY RES LAB US ARMY RES LAB
AMSRL-WT-TA AMSRL-WT-PD
ABERDEEN PROVING GRD MD 21005-5066 ABERDEEN PROVING GRD MD 21005-5066

DR NORRIS J HUFFINGTON JR DR KAILASAM R IYER
US ARMY RES LAB STAFF SCI
AMSRL-WT-TD US ARMY RES OFC
ABERDEEN PROVING GRD MD 21005-5066 AMSRO-MS
(401)-278-6556 PO BOX 12211

RES TRIANGLE PK NC 27709-2211
(919)-549-4258
FAX: (919)-549-4310
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DR KAREN E JACKSON PROF JAMES JENKINS

AEROSPACE ENGR CORNELL UNIV

US ARMY VSD/ARL DEPT OF THEORETICAL

NASA LANGLEY RES CTR & APPLIED MECH

M/S 495 KIMBALL HALL

HAMPTON VA 23681-0001 ITHACA NY 14853-0001

(804)-864-4147 (607)-255-7185
FAX: (804)-864-8547 FAX: (607)-255-2011

DR DAVID Y JEONG PROF RAKESH K KAPANIA

MECH ENG ASSOC PROF

US DEPT OF TRANS VPI & SU VA TECH

M/S DTS-76 M/S 0203

KENDALL SQ 215 RANDOLPH HALL

CAMBRIDGE MA 02142-1093 BLACKSBURG VA 24061-0219

(617)-494-3654 (703)-231-4881

FAX: (617)-494-3066 FAX: (703)-231-9632

DR P W KINGMAN PROF ROBERT V KOHN

METALLURGIST COURANT INST

US ARMY RES LAB 251 MERCER ST

AMSRL-WT-TD NEW YORK NY 10012-0001

1115 HIGH COUNTRY (212)-998-3217

TOWSON MD 21286-0001 FAX: (212)-995-4121
(410)-278-6088

PROF DUSAN KRAJCINOVIC DR DAVID H LASSILA

ARIZONA STATE UNIV LAWRENCE LIVERMORE NATL LAB

MECH & AEROSPACE ENGRG M/S L-342

M/S 6106 PO BOX 808

TEMPE AZ 85287-6106 LIVERMORE CA 94550-0001

(602)-965-8656 (510)-423-9537
FAX: (602)-965-1384 FAX: (510)-422-2438

DR EDWARD LENOE DR LEE S MAGNESS JR

WEST POINT MIL ACADEMY US ARMY RES LAB

DEPT OF MECB ENGRG AMSRL-WT-TD
114 G WASHINGTON RD ABERDEEN PROVING GRD MD 21005-5066

WEST POINT NY 10996-1792
(914)-938-3131

PROF DAVID L MCDOWELL MR PAUL NOY

DIR MECH PROP RES LAB MECH ENG

GEORGIA INST OF TECH US ARMY RES LAB

302 COON BLDG MECH ENGRG AMSRL-MA-DA

ATLANTA GA 30332-0405 ARSENAL ST

(404)-894-5128 WATERTOWN MA 02172-0001

FAX: (404)-894-8336

PROF SIA NEMAT-NASSER DR THEODORE NICHOLAS

DEPT OF APP MECH & ENGRG SCI SR SCIENTIST

UCSD-DEPT OF AMES US AIR FORCE

M/S 0411 RM 4207 EBUl WL/MLLN

9500 GILMAN DR 2230 TENTH ST STE 1

LA JOLLA CA 92093-0411 WRIGHT-PATTERSON All OH 45433-6533

(619)-534-4772 (513)-255-1347

FAX: (619)-534-2727 FAX: (513)-476-4840
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DR T KEVIN O'BRIEN DR OSCAR ORRINGER
SR RES SCI MECH ENGR
US ARMY RES LAB/VSD US DOT/VOLPE CTR
NASA LANGLEY RES CTR DTS-76
MIS 188E KENDALL SQ
HAMPTON VA 23681-0001 CAMBRIDGE MA 02142-0001
(804)-864-3465 (617)-494-2303
FAX: (804)-864-7729

MR RICHARD J PALICKA DR FORREST T PATTERSON
PRES MASS INST OF TECH
CERCOM INC REL RM 1-008
Po BOX 70 77 MASSACHUSETTS AVE
1960 WATSON WAY CAMBRIDGE MA 02139-0001
VISTA CA 92083-0001 (617)-253-2318
(619)-727-6200 FAX: (617)-258-5802
FAX: (619)-727-6209

DR WILLIAM W PREDEBON MRS CLAUDIA J QUIGLEY
PROF OF ENGRG MECH US ARMY RES LAB
MICHIGAN TECH UNIV AMSRL-MA-DB
1400 TOWNSEND DR ARSENAL ST
HOUGHTON MI 49931-1295 WATERTOWN MA 02172-0001
(906)-487-2158 (617)-923-5152
FAX: (906)-487-2822 FAX: (617)-923-5154

DR MARTIN N RAFTENBERG DR ANISUR RAHMAN
US ARMY RES LAB DREXEL UNIV
BLDG 309 MIS 27-438
AMSRL-WT-TD 32ND AND CHESTNUT
ABERDEEN PROVING GRD MD 21005-5066 PHILADELPHIA PA 19104-0001
(410)-278-6075 (215)-895-2382
FAX: (410)-278-6952 FAX: (215)-895-6684

DR A M RAJENDRAN PROF K T RAMESH
US ARMY RES LAB ASSOC PROF
AMSRL-MA-DA THE JOHNS HOPKINS UNIV
ARSENAL ST DEPT OF MECH ENGRG
WATERTOWN MA 02172-0001 34TH AND CHARLES ST
(617)-923-5260 BALTIMORE MD 21218-0001

(410)-516-7735
FAX: (410)-516-7254

PROF G RAVICHANDRAN PROF JOHN N ROSSETTOS
CA INST OF TECH NORTHEASTERN UNIV
M/S 105-50 DEPT OF MECH ENGRG
1201 E CALIFORNIA BLVD 360 HUNTINGTON AVE
PASADENA CA 91125-0001 BOSTON MA 02115-5096
(818)-395-4525 (617)-437-3809
FAX: (818)-449-2677 FAX: (617)-437-2921

MR KARL SALOMAN PROF BHAVANI V SANKAR
US ARMY RES LAB ASSOC PROF
AMSRL-MA-DA UNIV OF FLORIDA
ARSENAL ST DEPT OF AERO ENGRG
WATERTOWN MA 02172-0001 231 AEROSPACE
(617)-923-5233 GAINESVILLE FL 32611-2031

(904)-392-6749
FAX: (904)-392-7303
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DR MICHAEL SCHEIDLER DR MARK J SHUART
MATHEMATICIAN ASST CH? STRUC NECH DIV
US ARMY RES LAB NASA LANGLEY RES CTR
AMSRL-WT-TD M/S 244
ABERDEEN PROVING GRD MD 21005-5066 HAMPTON VA 23681-0001
(301)-278-6836 (804)-864-2902
FAX: (301)-278-6952 FAX: (804)-864-8318

PROF JAMES G SIMMONDS PROF JAMES M STAEHLER
UNIV OF VIRGINIA MICHIGAN TECH UNIV
DEPT OF APPLIED MATH DEPT MECH ENGRG
THORNTON HALL 1400 TOWNSEND DR
CHARLOTTESVILLE VA 22903-2422 HOUGHTON MI 49931-1295
(804)-924-1041 (906)-487-2009

FAX: (906)-487-2822

PROF THEOFANIS STROUBOULIS DR GHATUPARTHI SUBHASH
TEXAS A&M UNIV CALIFORNIA INST OF TECH
DEPT OF AERO ENGRG GRAD AERO LAB
COLLEGE STATION TX 77843-0001 M/S 105-50

PASADENA CA 91125-0001

PROF C T SUN MISS YIM HAR TANG
PURDUE UNIV MECH ENGR
SCHOOL OF AERO & ASTRO US DOT/VOLPE CTR
GRISSOM HALL 325 DTS-76
W LAFAYETTE IN 47907-1282 KENDALL SQ
(317)-494-5130 CAMBRIDGE MA 02142-0001
FAX: (317)-494-0309 (617)-494-2356

FAX: (617)-494-3066

DR JEROME TZENG MR RICHARD VITALI
MECH ENGR DIR
US ARMY RES LAB US ARMY RES LAB
AMSRL-WT-PD AMSRL-D
ABERDEEN PROVING GRD MD 21005-5066 2800 POWDER MILL RD
(410)-278-6805 ADELPHI MD 20783-1145

(301)-394-1600
FAX: (301)-394-1496

DR JOHN W WALTER DR TUSIT WEERASOORIYA
MECH ENGR US ARMY RES LAB
US ARMY RES LAB AMSRL-MA-DA
AMSRL-WT-TD ARSENAL ST
ABERDEEN PROVING GRD MD 21005-5066 WATERTOWN MA 02172-0001
(410)-278-6051 (000)-923-5069
FAX: (410)-278-6952

MR CRAIG WITTMAN DR THOMAS W WRIGHT
STAFF ENGR SR HES SCIENTIST
ALLIANT TECHSYSTEMS INC US ARMY RES LAB
M/S MN1I-1812 WTD
600 2ND ST NE AMSRL-WT-TD
HOPKINS MN 55343-0001 ABERDEEN PROVING GRD MD 21210-0001
(612)-931-6983 (410)-278-6046
FAX: (612)-931-6512 FAX: (410)-278-6952

DR JULIAN J WU MR MIN ZHOU
US ARMY RES OFC BROWN UNIV
MATH SCIENCE DIV DIV OF ENGRG
AMSRO-MA PO BOX D
Po BOX 12211 PROVIDENCE RI 02912-0001
HES TRIANGLE PARE NC 27709-2211 (401)-863-3034

FAX: (401)-863-1157
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